JETP Letters

, Volume 90, Issue 10, pp 637–641 | Cite as

Helicity detection of astrophysical magnetic fields from radio emission statistics

Article

Abstract

The inverse problem of the detection of the helical properties of a turbulent magnetic field using integral observation statistics is discussed. A principal solution that sets the relation between the values of magnetic helicity and the level of correlation between the Faraday rotation measure and the polarization degree of radio synchrotron emission has been presented. The effect of depolarization plays the main role in this problem and allows for the detection of magnetic helicity for a certain frequency range of observable radio emissions. The proposed method is mainly sensitive to the large-scale magnetic field component.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Zweibel and C. Heiles, Nature 385, 131 (1997).CrossRefADSGoogle Scholar
  2. 2.
    E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon, Oxford, 1979).Google Scholar
  3. 3.
    F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).MATHGoogle Scholar
  4. 4.
    A. Brandenburg, Astrophys. J. 550, 824 (2001).CrossRefADSGoogle Scholar
  5. 5.
    D. Sokoloff, Plasma Phys. Control. Fusion 49, 447 (2007).CrossRefADSGoogle Scholar
  6. 6.
    P. D. Mininni, Phys. Rev. E 76, 026316 (2007).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. Shukurov, D. Sokoloff, K. Subramanian, and A. Brandenburg, Astron. Astrophys. 448, L33 (2006), arXiv:astro_ph/0512592.CrossRefADSGoogle Scholar
  8. 8.
    V. V. Pipin, Astron. Zh. 84, 461 (2007) [Astron. Rep. 51, 411 (2007)].Google Scholar
  9. 9.
    A. Brandenburg, Highlights Astron. 14, 291 (2007), arXiv:astro_ph/0701056.ADSGoogle Scholar
  10. 10.
    H. Zhang, D. Sokoloff, I. Rogachevskii, and N. Kleeorin, Mon. Not. R. Astron. Soc. 365, 276 (2006), arXiv:astro_ph/0503651.CrossRefADSGoogle Scholar
  11. 11.
    F. Stefani, A. Gailitis, and G. Gerbeth, Zamm-Zeitschr. Angewandte Mathem. Mech. 88, 930 (2008).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. A. Denisov, V. I. Noskov, R. A. Stepanov, and P. G. Frik, Pis’ma Zh. Eksp. Teor. Fiz. 88, 198 (2008) [JETP Lett. 88, 167 (2008)].Google Scholar
  13. 13.
    T. Kahniashvili, New Astron. Rev. 50, 1015 (2006), arXiv:astro-ph/0605440.CrossRefADSGoogle Scholar
  14. 14.
    T. Kahniashvili and T. Vachaspati, Phys. Rev. D 73, 063507 (2006).CrossRefADSGoogle Scholar
  15. 15.
    R. Beck, Adv. Radio Sci. 5, 399 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Ruzmaikin, D. D. Sokoloff, and A. M. Shukurov, Magnetic Fields of Galaxies (Nauka, Moscow, 1988; Kluwer Acad., Dordrecht, 1988).Google Scholar
  17. 17.
    A. Fletcher and A. Shukurov, Mon. Not. R. Astron. Soc. 371, L21 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Continuous Media MechanicsPermRussia

Personalised recommendations