Osmotic pressure of matter and vacuum energy
- 44 Downloads
Abstract
The walls of the box which contains matter represent a membrane that allows the relativistic quantum vacuum to pass but not matter. That is why the pressure of matter in the box may be considered as the analog of the osmotic pressure. However, we demonstrate that the osmotic pressure of matter is modified due to interaction of matter with vacuum. This interaction induces the nonzero negative vacuum pressure inside the box, as a result the measured osmotic pressure becomes smaller than the matter pressure. As distinct from the Casimir effect, this induced vacuum pressure is the bulk effect and does not depend on the size of the box. This effect dominates in the thermodynamic limit of the infinite volume of the box. Analog of this effect has been observed in the dilute solution of 3He in liquid 4He, where the superfluid 4He plays the role of the non-relativistic quantum vacuum, and 3He atoms play the role of matter.
Keywords
Osmotic Pressure JETP Letter Vacuum Energy Vacuum Pressure Quantum VacuumPreview
Unable to display preview. Download preview PDF.
References
- 1.F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008).CrossRefADSGoogle Scholar
- 2.F. R. Klinkhamer and G. E. Volovik, arXiv:0907.4887.Google Scholar
- 3.F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008), arXiv:0806.2805; arXiv:0907.4887.CrossRefADSGoogle Scholar
- 4.L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 59, 669 (1948).Google Scholar
- 5.J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).CrossRefADSGoogle Scholar
- 6.C. Ebner and D. O. Edwards, Phys. Rep. 2, 77 (1971).CrossRefADSGoogle Scholar
- 7.J. R. Owers-Bradley, Rep. Prog. Phys. 60, 1173 (1997).CrossRefADSGoogle Scholar
- 8.J. Rysti, Interactions in Dilute 3He-4He Mixtures, Master’s Thesis (Helsinki Univ. of Technology, 2008).Google Scholar
- 9.F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 79, 063527 (2009), arXiv:0811.4347.CrossRefADSGoogle Scholar
- 10.P. O. Mazur and E. Mottola, Proc. Nat. Acad. Sci. 101, 9545 (2004); arXiv:gr-qc/0407075.CrossRefADSGoogle Scholar
- 11.M. Visser, S. Liberati, and S. Sonego, arXiv:0902.0346.Google Scholar
- 12.Ya. B. Zeldovich and A. A. Starobinsky, JETP 34, 1159 (1972).ADSGoogle Scholar
- 13.F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 80, 083001 (2009), arXiv:0905.1919.CrossRefGoogle Scholar
- 14.N. Arkani-Hamed, L. J. Hall, C. Kolda, and H. Murayama, Phys. Rev. Lett. 85, 4434 (2000), arXiv:astroph/0005111.CrossRefADSGoogle Scholar
- 15.W. F. Saam, Ann. Phys. (N.Y.) 53,219, 239 (1969).CrossRefADSGoogle Scholar
- 16.L. Viverit, C. J. Pethick, and H. Smith, Phys. Rev. A 61, 053605 (2000).CrossRefADSGoogle Scholar
- 17.A. P. Albus, S. A. Gardiner, F. Illuminati, and M. Wilkens, Phys. Rev. A 65, 053607 (2002).CrossRefADSGoogle Scholar
- 18.M. Krech, Casimir Effect in Critical Systems (World Sci., Singapore, 1994).Google Scholar
- 19.G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar