Advertisement

JETP Letters

, Volume 90, Issue 8, pp 587–591 | Cite as

Topological invariant for superfluid 3He-B and quantum phase transitions

  • G. E. Volovik
Article

Abstract

We consider topological invariant describing the vacuum states of superfluid 3He-B, which belongs to the special class of time-reversal invariant topological insulators and superfluids. Discrete symmetries important for classification of the topologically distinct vacuum states are discussed. One of them leads to the additional subclasses of 3He-B states and is responsible for the finite density of states of Majorana fermions living at some interfaces between the bulk states. Integer valued topological invariant is expressed in terms of the Green’s function, which allows us to consider systems with interaction.

Keywords

JETP Letter Topological Charge Discrete Symmetry Quantum Phase Transition Topological Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).CrossRefADSGoogle Scholar
  2. 2.
    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP Conf. Proc. 1134, 10 (2009); arXiv:0905.2029.CrossRefADSGoogle Scholar
  3. 3.
    A. P. Schnyder, S. Ryu, and A. W. W. Ludwig, Phys. Rev. Lett. 102, 196804 (2009); arXiv:0901.1343.CrossRefADSGoogle Scholar
  4. 4.
    A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686.CrossRefADSGoogle Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  6. 6.
    G. E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Ed. by W. G. Unruh and R. Schützhold, Springer Lecture Notes in Physics, Vol. 718 (2007), pp. 31–73; cond-mat/0601372.Google Scholar
  7. 7.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).CrossRefADSGoogle Scholar
  8. 8.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    B. Farid and A. M. Tsvelik, arXiv:0909.2886.Google Scholar
  10. 10.
    G. E. Volovik and V. M. Yakovenko, J. Phys.: Cond. Mat. 1, 5263 (1989).CrossRefADSGoogle Scholar
  11. 11.
    V. M. Yakovenko, Fizika (Zagreb) 21(Suppl. 3), 231 (1089); arXiv:cond-mat/9703195.Google Scholar
  12. 12.
    K. Sengupta and V. M. Yakovenko, Phys. Rev. B 62, 4586 (2000).CrossRefADSGoogle Scholar
  13. 13.
    N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).CrossRefADSGoogle Scholar
  14. 14.
    G. E. Volovik, JETP 67, 1804 (1988); in Sec. 3 the quantum Hall effect in the absence of external magnetic field is discussed for the model of two-band insulator considered in [15].Google Scholar
  15. 15.
    B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev, and V. V. Tugushev, JETP 54, 391 (1981).Google Scholar
  16. 16.
    K. Ishikawa and T. Matsuyama, Z. Phys. C 33, 41 (1986).CrossRefADSGoogle Scholar
  17. 17.
    K. Ishikawa and T. Matsuyama, Nucl. Phys. B 280, 523 (1987).CrossRefADSGoogle Scholar
  18. 18.
    K. Jansen, Phys. Rep. 273, 1 (1996).CrossRefMathSciNetGoogle Scholar
  19. 19.
    G. E. Volovik, Exotic Properties of Superfluid 3He (World Sci., Singapore, 1992).Google Scholar
  20. 20.
    S. Weinberg, The Quantum Theory of Fields (Cambridge Univ., Cambridge, 1995).Google Scholar
  21. 21.
    F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 (2007).MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).CrossRefADSGoogle Scholar
  24. 24.
    B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).ADSGoogle Scholar
  25. 25.
    M. Sato, Phys. Rev. B 79, 214526 (2009).CrossRefADSGoogle Scholar
  26. 26.
    D. Vollhardt and O. Wöffe, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).Google Scholar
  27. 27.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 90, 440 (2009) [JETP Lett. 90, 398 (2009)]; arXiv:0907.5389.Google Scholar
  28. 28.
    N. B. Kopnin, P. I. Soininen, and M.M. Salomaa, J. Low Temp. Phys. 85, 267 (1991).CrossRefADSGoogle Scholar
  29. 29.
    C. A. M. Castelijns, K. F. Coates, A. M. Gue’nault, et al., Phys. Rev. Lett. 56, 69 (1986).CrossRefADSGoogle Scholar
  30. 30.
    J. P. Davis, J. Pollanen, H. Choi, et al., Phys. Rev. Lett. 101, 085301 (2008).CrossRefADSGoogle Scholar
  31. 31.
    K. Nagai, Y. Nagato, M. Yamamoto, and S. Higashitani, J. Phys. Soc. Jpn. 77, 111003 (2008).CrossRefADSGoogle Scholar
  32. 32.
    S. Murakawa, Y. Wada, Y. Tamura, et al., J. Phys.: Conf. Ser. 150, 032070 (2009).CrossRefADSGoogle Scholar
  33. 33.
    Suk Bum Chung and Shou-Cheng Zhang, arXiv:0907. 4394.Google Scholar
  34. 35.
    S. Murakawa, Y. Tamura, Y. Wada, et al., Phys. Rev. Lett. 103, 155301 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations