Advertisement

JETP Letters

, Volume 90, Issue 7, pp 544–547 | Cite as

Dynamical toroidal Hopfions in a ferromagnet with easy-axis anisotropy

Condensed Matter

Abstract

Three-dimensional toroidal precession solitons with a nonzero Hopf index, which uniformly move along the anisotropy axis in a uniaxial ferromagnet, have been found. The structure and existence region of the solitons have been numerically determined by solving the Landau-Lifshitz equation.

Keywords

Soliton JETP Letter Vortex Ring Anisotropy Axis Precession Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev, Preprint IAS 75-QS70 (1975).Google Scholar
  2. 2.
    G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 73, 767 (1977) [JETP 46, 401 (1977)].Google Scholar
  3. 3.
    A. M. Kamchatnov, Zh. Eksp. Teor. Fiz. 82, 117 (1982) [JETP 55, 69 (1982)].MathSciNetGoogle Scholar
  4. 4.
    I. E. Dzyloshinskii and B. A. Ivanov, Pis’ma Zh. Eksp. Teor. Fiz. 29, 592 (1979) [JETP Lett. 29, 540 (1979)].Google Scholar
  5. 5.
    B. A. Ivanov and A. M. Kosevich, Pis’ma Zh. Eksp. Teor. Fiz. 24, 495 (1976) [JETP Lett. 24, 451 (1976)].Google Scholar
  6. 6.
    B. A. Ivanov and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 72, 2000 (1977) [JETP 45, 1050 (1977)].Google Scholar
  7. 7.
    N. R. Cooper, Phys. Rev. Lett. 82, 1554 (1999).CrossRefADSGoogle Scholar
  8. 8.
    P. Sutcliffe, Phys. Rev. B 76, 184439 (2007).CrossRefADSGoogle Scholar
  9. 9.
    A. Kundu and Y. P. Rybakov, J. Phys. A 15, 269 (1982).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    J. Gladikowski and M. Hellmund, Phys. Rev. D 56, 5194 (1997).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    N. Papanicolaou and T. N. Tomaras, Nucl. Phys. B 360, 425 (1991).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. B. Borisov and F. N. Rybakov, Pis’ma Zh. Eksp. Teor. Fiz. 88, 303 (2008) [JETP Lett. 88, 264 (2008)].Google Scholar
  13. 13.
    T. Ioannidou and P. M. Sutcliffe, Physica D 150, 118 (2001).MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetization Waves. Dynamical and Topological Solitons (Nauk. Dumka, Kiev, 1983) [in Russian].Google Scholar
  15. 15.
    A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations