Advertisement

JETP Letters

, 90:391 | Cite as

Spectrum of bound fermion states on vortices in 3He-B

  • M. A. SilaevEmail author
Condensed Matter

Abstract

We study subgap spectra of fermions localized within vortex cores in 3He-B. We develop an analytical treatment of the low-energy states and consider the characteristic properties of fermion spectra for different types of vortices. Due to the removed spin degeneracy the spectra of all singly quantized vortices consist of two different anomalous branches crossing the Fermi level. For singular o and u vortices the anomalous branches are similar to the standard Caroli-de Gennes-Matricon ones and intersect the Fermi level at zero angular momentum yet with different slopes corresponding to different spin states. On the contrary the spectral branches of nonsingular vortices intersect the Fermi level at finite angular momenta which leads to the appearance of a large number of zero modes, i.e. energy states at the Fermi level. Considering the ν, w and uvw vortices with superfluid cores we show that the number of zero modes is proportional to the size of the vortex core.

PACS numbers

74.25.-q 74.78.Na 

References

  1. 1.
    C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    A. K. Geim, S. V. Dubonos, J. J. Palacios, et al., Phys. Rev. Lett. 85, 1528 (2000).CrossRefADSGoogle Scholar
  3. 3.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 57, 233 (1993) [JETP Lett. 57, 244 (1993)].Google Scholar
  4. 4.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. Lett. 51, 2040 (1983).CrossRefADSGoogle Scholar
  5. 5.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 31, 203 (1984).CrossRefADSGoogle Scholar
  6. 6.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefADSGoogle Scholar
  7. 7.
    T. Passvogel, N. Schopohl, and L. Tewordt, J. Low Temp. Phys. 50, 509 (1983); T. Passvogel, N. Schopohl, and L. Tewordt, J. Low Temp. Phys. 56, 383 (1984).CrossRefADSGoogle Scholar
  8. 8.
    J. R. Pekola, J. T. Simola, P. J. Hakonen, et al., Phys. Rev. Lett. 53, 584 (1984).CrossRefADSGoogle Scholar
  9. 9.
    O. T. Ikkala, G. E. Volovik, P. J. Hakonen, et al., Pis’ma Zh. Eksp. Teor. Fiz. 35, 338 (1982) [JETP Lett. 35, 416 (1982)].Google Scholar
  10. 10.
    G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 49, 343 (1989) [JETP Lett. 49, 391 (1989)].ADSGoogle Scholar
  11. 11.
    G. E. Volovik, J. Phys.: Condens. Matter 3, 357 (1991).CrossRefADSGoogle Scholar
  12. 12.
    T. Sh. Misirpashev and G. E. Volovik, Physica B 210, 338 (1995).CrossRefADSGoogle Scholar
  13. 13.
    Yu. G. Makhlin and G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 62, 719 (1995) [JETP Lett. 62, 738 (1995)].Google Scholar
  14. 14.
    A. S. Mel’nikov, D. A. Ryzhov, and M. A. Silaev, Phys. Rev. B 78, 064513 (2008).CrossRefADSGoogle Scholar
  15. 15.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyEspooFinland

Personalised recommendations