JETP Letters

, 90:382 | Cite as

Dimer structures formed in smectic films by inclusions with parallel and antiparallel topological dipole moments

  • P. V. Dolganov
  • E. I. Kats
  • V. K. Dolganov
  • P. Cluzeau
Condensed Matter


Self-organization of cholesteric and nematic droplets in smectic free-standing films is investigated. Strong tangential anchoring at the droplet boundary leads to nucleation of a topological defect and formation of a topological dipole from the droplet and the defect. The interaction between droplets results in assembly of the droplets in dimers and line chains. Topological dipoles of the droplet-defect pairs can be oriented in dimers with polar (ferroelectric) and nonpolar (antiferroelectric) ordering. In this paper we found novel dimer structures formed by droplets with different handedness of the c-director field near the droplets. Depending on the relative magnitude of the droplet dipoles the resulting structure may be dipolar or quadrupolar. Formation of antiferroelectric dimers is discussed on the basis of electromagnetic analogy.

PACS numbers

61.30.-v 81.16.Dn 


  1. 1.
    P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).CrossRefGoogle Scholar
  2. 2.
    T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998).CrossRefADSGoogle Scholar
  3. 3.
    J.-C. Loudet, P. Barois, and P. Poulin, Nature (London) 407, 611 (2000).CrossRefADSGoogle Scholar
  4. 4.
    P. Cluzeau, P. Poulin, G. Joly, and H. T. Nguyen, Phys. Rev. E 63, 031702 (2001).CrossRefADSGoogle Scholar
  5. 5.
    V. G. Nazarenko, A. B. Nych, and B. I. Lev, Phys. Rev. Lett. 87, 075504 (2001).CrossRefADSGoogle Scholar
  6. 6.
    P. Cluzeau, G. Joly, H. T. Nguyen, and V. K. Dolganov, Pis’ma Zh. Eksp. Teor. Fiz. 75, 573 (2002) [JETP Lett. 75, 482 (2002)]; P. Cluzeau, G. Joly, H. T. Nguyen, and V. K. Dolganov, Pis’ma Zh. Eksp. Teor. Fiz. 76, 411 (2002) [JETP Lett. 76, 351 (2002)].Google Scholar
  7. 7.
    P. V. Dolganov, E. I. Demikhov, B. M. Bolotin, et al., Eur. Phys. J. E 12, 593 (2003).CrossRefGoogle Scholar
  8. 8.
    C. Völtz and R. Stannarius, Phys. Rev. E 70, 061702 (2004).CrossRefADSGoogle Scholar
  9. 9.
    P. V. Dolganov, H. T. Nguyen, G. Joly, et al., Europhys. Lett. 76, 250 (2006).CrossRefADSGoogle Scholar
  10. 10.
    I. Muševič, M. Škavabot, U. Tkalec, et al., Science 313, 954 (2006).CrossRefADSGoogle Scholar
  11. 11.
    C. Bohley and R. Stannarius, Eur. Phys. J. E 23, 25 (2007).CrossRefGoogle Scholar
  12. 12.
    P. V. Dolganov, H. T. Nguyen, E. I. Kats, et al., Phys. Rev. E 75, 031706 (2007).CrossRefADSGoogle Scholar
  13. 13.
    C. Bohley and R. Stannarius, Soft Matter 4, 683 (2008).CrossRefGoogle Scholar
  14. 14.
    P. V. Dolganov and P. Cluzeau, Phys. Rev. E 78, 021701 (2008).CrossRefADSGoogle Scholar
  15. 15.
    W. Russel, D. Saville, and W. Schowalter, Colloidal Dispersions (Cambridge Univ., Cambridge, UK, 1989).Google Scholar
  16. 16.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993).Google Scholar
  17. 17.
    P. Pieranski et al., Physica A 194, 364 (1993).CrossRefADSGoogle Scholar
  18. 18.
    W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).CrossRefADSGoogle Scholar
  19. 19.
    P. Cluzeau, M. Ismaili, A. Annakar, et al., Mol. Cryst. Liq. Cryst. Sci. Technol. A 362, 185 (2001).CrossRefGoogle Scholar
  20. 20.
    T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).CrossRefADSGoogle Scholar
  21. 21.
    P. V. Dolganov, H. T. Nguyen, G. Joly, et al., Zh. Eksp. Teor. Fiz. 132, 756 (2007) [JETP 105, 665 (2007)].Google Scholar
  22. 22.
    D. R. Link, G. Natale, R. Shao, et al., Science 278, 1924 (1997).CrossRefADSGoogle Scholar
  23. 23.
    P. V. Dolganov, H. T. Nguyen, G. Joly, et al., Eur. Phys. J. E 25, 31 (2008).CrossRefGoogle Scholar
  24. 24.
    D. Pettey, T. C. Lubensky, and D. R. Link, Liq. Cryst. 25, 579 (1998).CrossRefGoogle Scholar
  25. 25.
    J. Fukuda, Eur. Phys. J. E 24, 91 (2007).CrossRefMathSciNetGoogle Scholar
  26. 26.
    J. Fukuda and H. Yokoyama, Eur. Phys. J. E 4, 389 (2001).CrossRefGoogle Scholar
  27. 27.
    M. Tasinkevych, N. M. Silvestre, P. Patricio, and M. M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).CrossRefGoogle Scholar
  28. 28.
    C. Zhou, P. Yue, and J. J. Feng, Langmuir 24, 3099 (2008).CrossRefGoogle Scholar
  29. 29.
    P. Patrício, M. Tasinkevych, and M. M. Telo da Gama, Eur. Phys. J. E 7, 117 (2002).CrossRefGoogle Scholar
  30. 30.
    K. S. Korolev and D. R. Nelson, Phys. Rev. E 77, 051702 (2008).CrossRefADSGoogle Scholar
  31. 31.
    P. V. Dolganov, V. K. Dolganov, and P. Cluzeau, Zh. Eksp. Teor. Fiz. 136, 197 (2009) [JETP 109, 169 (2009)].Google Scholar
  32. 32.
    A. Pattanaporkrattana, C. S. Park, J. E. Maclennan, et al. (in press); N. M. Silvestre, P. Patricio, M. M. Telo da Gama, et al. (in press), arXiv:cond-mat.soft/0904/2713.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • E. I. Kats
    • 2
    • 3
  • V. K. Dolganov
    • 1
  • P. Cluzeau
    • 4
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Laue-Langevin InstituteGrenobleFrance
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Université Bordeaux I, Centre de Recherche Paul PascalCNRSPessacFrance

Personalised recommendations