Advertisement

JETP Letters

, 90:289 | Cite as

Curvature effects on magnetic susceptibility of 1D attractive two component fermions

  • T. Vekua
  • S. I. Matveenko
  • G. V. Shlyapnikov
Condensed Matter

Abstract

We develop a bosonization approach for finding magnetic susceptibility of 1D attractive two component Fermi gas at the onset of magnetization taking into account the curvature effects. It is shown that the curvature of free dispersion at the Fermi points couples the spin and charge modes and leads to a linear critical behavior and finite susceptibility for a wide range of models. Possible manifestations of spin-charge coupling in cold atomic gases are also briefly discussed.

PACS numbers

03.75.Ss 71.10.Pm 

References

  1. 1.
    A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge Univ., Cambridge, 1999).Google Scholar
  2. 2.
    O. M. Auslaender, H. Steinberg, A. Yacoby, et al., Science 308, 88 (2005).CrossRefADSGoogle Scholar
  3. 3.
    C. Kollath and U. Schollwöck, New J. Phys. 8, 220 (2006).CrossRefADSGoogle Scholar
  4. 4.
    H. Moritz, T. Stöferle, K. Günter, et al., Phys. Rev. Lett. 94, 210401 (2005).CrossRefADSGoogle Scholar
  5. 5.
    See for review: S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).CrossRefADSGoogle Scholar
  6. 6.
    H. Frahm and V. E. Korepin, Phys. Rev. B 43, 5653 (1991).CrossRefADSGoogle Scholar
  7. 7.
    T. B. Bahder and F. Woynarowich, Phys. Rev. B 33, 2114 (1986); F. Woynarovich, Phys. Rev. B 43, 11448 (1991); F. Woynarovich and K. Penc, Z. Phys. B 85, 269 (1991).CrossRefADSGoogle Scholar
  8. 8.
    K. Penc and J. Sólyom, Phys. Rev. B 47, 6273 (1993).CrossRefADSGoogle Scholar
  9. 9.
    S. Matveenko and S. Brazovskii, JETP 78, 892 (1994); S. Brazovskii, S. Matveenko, and P. Nozières, J. Phys. I France 4, 571 (1994).ADSGoogle Scholar
  10. 10.
    G. I. Japaridze and A. A. Nersesyan, JETP Lett. 27, 334 (1978); Phys. Lett. A 85, 23 (1981); J. Low Temp. Phys. 47, 91 (1983).ADSGoogle Scholar
  11. 11.
    V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42, 65 (1979).CrossRefADSGoogle Scholar
  12. 12.
    T. Giamarchi and H. J. Schulz, J. Phys. 49, 819 (1988).Google Scholar
  13. 13.
    M. A. Cazalilla, A. F. Ho, and T. Giamarchi, Phys. Rev. Lett. 95, 226402 (2005); Int. J. Mod. Phys. B 20, 5169 (2006).CrossRefADSGoogle Scholar
  14. 14.
    F. D. M. Haldane, J. Phys. C 14, 2585 (1981).CrossRefADSGoogle Scholar
  15. 15.
    S. Teber, Phys. Rev. B 76, 045309 (2007).CrossRefADSGoogle Scholar
  16. 16.
    F. A. Smirnov, Form Factors in Completely Integrable Models of QFT (World Sci., Singapore, 1992).Google Scholar
  17. 17.
    D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys. A. Math. Gen. 13, 585 (1980).CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).CrossRefADSGoogle Scholar
  19. 19.
    I. E. Dzyaloshinskii and A. I. Larkin, Zh. Eksp. Teor. Fiz. 61, 791 (1971) [Sov. Phys. JETP 34, 422 (1971)].Google Scholar
  20. 20.
    We expect that for m ≠ 0 we have a two component Luttinger liquid, although in the limit of m → 0 the velocity of linear excitations of one of the components vanishes.Google Scholar
  21. 21.
    F. H. L. Essler, H. Frahm, F. Göhmann, et al., The One-Dimensional Hubbard Model (Cambridge Univ., Cambridge, 2005).zbMATHGoogle Scholar
  22. 22.
    D. C. Cabra, A. De Martino, A. Honecker, et al., Phys. Rev. B 63, 094406 (2001).CrossRefADSGoogle Scholar
  23. 23.
    E. Zhao and W. V. Liu, arXiv:0804.4461.Google Scholar
  24. 24.
    H. Frahm and T. Vekua, J. Stat. Mech., P01007 (2008).Google Scholar
  25. 25.
    M. Rizzi, M. Polini, M. A. Cazalilla, et al., Phys. Rev. B 77, 245105 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. Vekua
    • 1
  • S. I. Matveenko
    • 1
    • 2
  • G. V. Shlyapnikov
    • 1
    • 3
  1. 1.Laboratoire de Physique Théorique et Modéles Statistiques, CNRSUniversitée Paris SudOisayFrance
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations