JETP Letters

, Volume 90, Issue 2, pp 134–138 | Cite as

Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties

  • L. A. Chernozatonskii
  • P. B. Sorokin
  • A. G. Kvashnin
  • D. G. Kvashnin
Condensed Matter

Abstract

We consider a new C2H nanostructure based on bilayer graphene transformed under the covalent bond of hydrogen atoms adsorbed on its external surface, as well as compounds of carbon atoms located opposite each other in neighboring layers. They constitute a “film” of the 〈111〉 diamond with a thickness of less than 1 nm, which is called diamane. The energy characteristics and electron spectra of diamane, graphene, and diamond are calculated using the density functional theory and are compared with each other. The effective Young’s moduli and destruction thresholds of diamane and graphene membranes are determined by the molecular dynamics method. It is shown that C2H diamane is more stable than CH graphane, its dielectric “gap” is narrower than the band gap of bulk diamond (by 0.8 eV) and graphane (by 0.3 eV), and is harder and more brittle than the latter.

PACS numbers

61.46.Hk 62.25.-g 81.05.Uv 81.05.Zx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 324, 236 (2009).CrossRefGoogle Scholar
  2. 2.
    E. J. Duplock, M. Scheffler, and P. J. D. Lindan, Phys. Rev. Lett. 92, 225502 (2004).Google Scholar
  3. 3.
    R. Ruoff, Nature Nanotechnol. 3, 10 (2008).CrossRefADSGoogle Scholar
  4. 4.
    L. A. Chernozatonskii, P. B. Sorokin, and J. Brüning, Appl. Phys. Lett. 91, 183103 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. K. Singh and B. I. Yakobson, Nano Lett. 9, 1540 (2009).CrossRefADSGoogle Scholar
  6. 6.
    J. O. Sofo, A. S. Chaudhari, and G. B. Barber, Phys. Rev. B 75, 153401 (2007).Google Scholar
  7. 7.
    S. Ryu, M. Y. Han, J. Maultzsch, et al., Nano Lett. 8, 4597 (2008).CrossRefADSGoogle Scholar
  8. 8.
    Z. Luo, T. Yu, K. Kim, et al., ACS Nano (2009), www.acsnano.org.
  9. 9.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefADSGoogle Scholar
  10. 10.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).CrossRefADSGoogle Scholar
  11. 11.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefADSGoogle Scholar
  12. 12.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).CrossRefADSGoogle Scholar
  13. 13.
    W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefADSGoogle Scholar
  16. 16.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    J. Gale and A. Rohl, Mol. Simul. 29, 291 (2003).MATHCrossRefGoogle Scholar
  18. 18.
    D. W. Brenner, Phys. Rev. B 42, 9458 (1990); Phys. Rev. B 46, 1948 (1992).CrossRefADSGoogle Scholar
  19. 19.
    K.-H. Lee and S. B. Sinnott, J. Phys.: Condens. Matter 16, 7261 (2004).CrossRefADSGoogle Scholar
  20. 20.
    J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993).Google Scholar
  21. 21.
    Synthetic Diamond: Emerging CVD Science and Technology, Ed. by K. E. Spear and J. P. Dismukes (Wiley, New York, 1994).Google Scholar
  22. 22.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Chernozatonskii
    • 1
  • P. B. Sorokin
    • 1
    • 2
  • A. G. Kvashnin
    • 2
  • D. G. Kvashnin
    • 2
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations