Advertisement

JETP Letters

, Volume 90, Issue 1, pp 25–31 | Cite as

Stability and ambiguous representation of shock wave discontinuity in thermodynamically nonideal media

  • A. V. Konyukhov
  • A. P. Likhachev
  • V. E. Fortov
  • S. I. Anisimov
  • A. M. Oparin
Plasma, Gases

Abstract

The nonlinear analysis of the behavior of a shock wave on a Hugoniot curve fragment that allows for the ambiguous representation of shock wave discontinuity has been performed. The fragment under consideration includes a section where the condition L > 1 + 2M is satisfied, which is a linear criterion of the instability of the shock wave in media with an arbitrary equation of state. The calculations in the model of a viscous heat-conductive gas show that solutions with an instable shock wave are not implemented. In the one-dimensional model, the shock wave decays into two shock waves or a shock wave and a rarefaction wave, which propagate in opposite directions, or can remain in the initial state. The choice of the solution depends on the parameters of the shock wave (position on the Hugoniot curve), as well as on the form and intensity of its perturbation. In the two-dimensional and three-dimensional calculations with a periodic perturbation of the shock wave, a “cellular” structure is formed on the shock front with a finite amplitude of perturbations that does not decrease and increase in time. Such behavior of the shock wave is attributed to the appearance of the triple configurations in the inclined sections of the perturbed shock wave, which interact with each other in the process of propagation along its front.

PACS numbers

47.40.-x 64.10.+h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. D”yakov, Zh. Eksp. Teor. Fiz. 27, 288 (1954).MathSciNetGoogle Scholar
  2. 2.
    V. M. Kontorovich, Zh. Eksp. Teor. Fiz. 33, 1525 (1957) [Sov. Phys. JETP 6, 1179 (1957)].Google Scholar
  3. 3.
    J. J. Erpenbeck, Phys. Fluids 5, 1181 (1962).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    G. W. Swan and G. R. Fowles, Phys. Fluids 18, 28 (1975).zbMATHCrossRefADSGoogle Scholar
  5. 5.
    J. W. Bates, Phys. Fluids 19, 094102 (2007).CrossRefADSGoogle Scholar
  6. 6.
    A. E. Roberts, Los Alamos Sci. Labor. Rep. No. LA-299 (1945).Google Scholar
  7. 7.
    G. Ya. Galin, Dokl. Akad. Nauk SSSR 120, 730 (1958) [Sov. Phys. Dokl. 3, 503 (1958)].MathSciNetGoogle Scholar
  8. 8.
    C. S. Gardner, Phys. Fluids 6, 1366 (1963).zbMATHCrossRefADSGoogle Scholar
  9. 9.
    G. R. Fowles and A. F. P. Houwing, Phys. Fluids 27, 1982 (1984).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    S. A. Egorushkin, Izv. AN SSSR, Ser. Mekh. Zhidk. Gasa, No. 6, 147 (1982).Google Scholar
  11. 11.
    N. M. Kuznetsov, Zh. Eksp. Teor. Fiz. 88, 470 (1985) [Sov. Phys. JETP 61, 275 (1985)].ADSGoogle Scholar
  12. 12.
    N. M. Kuznetsov, Usp. Fiz. Nauk 159, 493 (1989) [Sov. Phys. Usp. 32, 993 (1989)].Google Scholar
  13. 13.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  15. 15.
    A. L. Ni, S. G. Sugak, and V. E. Fortov, Teplofiz. Vys. Temp. 24, 564 (1986).Google Scholar
  16. 16.
    V. A. Gushchin, A. P. Lichachev, N. G. Nechiporenko, et al., in News in Numerical Simulation: Algoritms, Computational Experiments and Results, Collected vol. (Nauka, Moscow, 2000), p. 165 [in Russian].Google Scholar
  17. 17.
    A. V. Konyukhov, A. P. Likhachev, A. M. Oparin, et al., Zh. Eksp. Teor. Fiz. 125, 927 (2004) [JETP 98, 811 (2004)].Google Scholar
  18. 18.
    A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, et al., in Physics of Extremal States of Matter-2008 (IPKhF RAN, Chernogolovka, 2008), p. 124.Google Scholar
  19. 19.
    G. Ya. Galin, Izv. AN SSSR, Ser. Mekh. Zhidk. Gasa, No. 3, 164 (1975).Google Scholar
  20. 20.
    P. L. Roe, J. Comput. Phys. 43, 357 (1981).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    P. Glaister, J. Comput. Phys. 74, 382 (1988).zbMATHCrossRefADSGoogle Scholar
  22. 22.
    R. Menikoff and B. J. Plohr, Rev. Mod. Phys. 61, 75 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Konyukhov
    • 1
  • A. P. Likhachev
    • 1
  • V. E. Fortov
    • 1
  • S. I. Anisimov
    • 2
  • A. M. Oparin
    • 3
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Institute for Computer Aided DesignRussian Academy of SciencesMoscowRussia

Personalised recommendations