Advertisement

JETP Letters

, Volume 90, Issue 1, pp 1–4 | Cite as

Particle decay in de sitter spacetime via quantum tunneling

  • G. E. Volovik
Gravity, Astrophysics

Abstract

The quantum tunneling process of decay of the composite particle in the de Sitter vacuum looks as thermal radiation with the effective temperature twice larger than the Hawking temperature associated with the cosmological horizon.

PACS numbers

04.62.+v 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Visser, Int. J. Mod. Phys. D 14, 2051 (2005); arXiv:gr-qc/0309072.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    P. Painlevé, C. R. Acad. Sci. (Paris) 173, 677 (1921); A. Gullstrand, Arkiv. Mat. Astron. Fys. 16 (8), 1 (1922).Google Scholar
  3. 3.
    G. E. Volovik, JETP Lett. 69, 705 (1999); arXiv:gr-qc/9901077.CrossRefADSGoogle Scholar
  4. 4.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    G. E. Volovik, Int. J. Mod. Phys. D (in press); arXiv:0803.3367 [gr-qc].Google Scholar
  6. 7.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008).Google Scholar
  7. 8.
    V. Gurarie, arXiv:0905.4498.Google Scholar
  8. 9.
    A. A. Starobinskii, JETP Lett. 30, 682 (1979).ADSGoogle Scholar
  9. 10.
    A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994).CrossRefADSGoogle Scholar
  10. 11.
    J. Garriga and T. Tanaka, Phys. Rev. D 77, 024021 (2008); arXiv:0706.0295.Google Scholar
  11. 12.
    N. C. Tsamis and R. P. Woodard, Phys. Rev. D 78, 028501 (2008); arXiv:0708.2004.Google Scholar
  12. 13.
    A. M. Polyakov, Nucl. Phys. B 797, 199 (2008); arXiv:0709.2899; Global warming of the de Sitter space, talk at Strings-2008, http://indico.cern.ch/get-File.py/access?contribId=4&resId=0&materialId= slides&confId=21917.zbMATHADSMathSciNetGoogle Scholar
  13. 14.
    C. Busch, arXiv:0803.3204.Google Scholar
  14. 15.
    O. Nachtmann, Sitzungsber. d. Österr. Akademie d. Wiss., Mathem.-naturw. Klasse II 176(8–10), (1967).Google Scholar
  15. 16.
    J. Bros, H. Epstein, M. Gaudin, et al., arXiv:0901.4223 [hep-th].Google Scholar
  16. 17.
    J. Bros, H. Epstein, and U. Moschella, arXiv:0812.3513 [hep-th].Google Scholar
  17. 18.
    J. Bros, H. Epstein, and U. Moschella, JCAP 0802:003 (2008); arXiv:hep-th/0612184.Google Scholar
  18. 19.
    E. T. Akhmedov, P. V. Buividovich, and D. A. Singleton, arXiv:0905.2742 [gr-qc].Google Scholar
  19. 20.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B 673, 227 (2009); arXiv:0808.3413.CrossRefADSMathSciNetGoogle Scholar
  20. 21.
    T. Pilling, Phys. Lett. B 660, 402 (2008); arXiv:0709.1624.CrossRefADSMathSciNetGoogle Scholar
  21. 22.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Phys. Lett. B 666, 269 (2008); arXiv:0804.2289.CrossRefADSMathSciNetGoogle Scholar
  22. 23.
    E. T. Akhmedov, T. Pilling, and D. Singleton, Int. J. Mod. Phys. D 17, 2453 (2008); arXiv:0805.2653.zbMATHCrossRefADSGoogle Scholar
  23. 24.
    W. G. Unruh, Phys. Rev. D 14, 870 (1976).CrossRefADSGoogle Scholar
  24. 25.
    G. E. Volovik, Exotic Properties of Superfluid 3 He (World Sci., Singapore, 1992).Google Scholar
  25. 26.
    Ya-Peng Hu, Jing-Yi Zhang, and Zheng Zhao, arXiv:0901.2680.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations