Advertisement

JETP Letters

, Volume 89, Issue 11, pp 525–528 | Cite as

z = 3 Lifshitz-Hořava model and fermi-point scenario of emergent gravity

  • G. E. Volovik
Article

Abstract

Recently Hořava proposed a model for gravity which is described by the Einstein action in the infrared, but lacks the Lorentz invariance in the high-energy region where it experiences the anisotropic scaling. We test this proposal using two condensed matter examples of emergent gravity: acoustic gravity and gravity emerging in the fermionic systems with Fermi points. We suggest that quantum hydrodynamics, which together with the quantum gravity is the non-renormalizable theory, may exhibit the anisotropic scaling in agreement with the proposal. The Fermi point scenario of emergent general relativity demonstrates that under general conditions, the infrared Einstein action may be distorted, i.e., the Hořava parameter λ is not necessarily equal 1 even in the low energy limit. The consistent theory requires special hierarchy of the ultra-violet energy scales and the fine-tuning mechanism for the Newton constant.

PACS numbers

04.02.Cv 11.30.Cp 12.60.-i 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).Google Scholar
  2. 2.
    P. Hořava, Phys. Rev. D 79, 084008 (2009).Google Scholar
  3. 3.
    P. Hořava, JHEP 0903, 020 (2009); arXiv:0812.4287 [hep-th].Google Scholar
  4. 4.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Phys. Rev. D 51, 2827 (1995).CrossRefADSGoogle Scholar
  5. 5.
    C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Sci., Singapore, 1991).Google Scholar
  6. 6.
    G. E. Volovik, Universe in a Helium Droplet (Clarendon, Oxford, 2003).zbMATHGoogle Scholar
  7. 7.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).Google Scholar
  8. 8.
    E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 11, 255, 269 (1941).Google Scholar
  9. 9.
    G. Calcagni, arXiv:0904.0829.Google Scholar
  10. 10.
    F. R. Klinkhamer and G. E. Volovik, JETP Lett. 81, 551 (2005); hep-ph/0505033.CrossRefADSGoogle Scholar
  11. 11.
    L. V. Laperashvili, H. B. Nielsen, and D. A. Ryzhikh, Int. J. Mod. Phys. A 18, 4403 (2003); arXiv:hep-th/0211224.zbMATHCrossRefADSGoogle Scholar
  12. 12.
    M. Creutz, JHEP 0804, 017 (2008); arXiv:0712.1201 [hep-lat].Google Scholar
  13. 13.
    G. Jannes, arXiv:0904.3627.Google Scholar
  14. 14.
    L. Maccione and S. Liberati, JCAP 08, 027 (2008); arXiv:0805.2548.Google Scholar
  15. 15.
    L. D. Landau, J. Phys. USSR 5, 71 (1941).Google Scholar
  16. 16.
    G. E. Volovik, in Proc. of the 11th Marcel Grossmann Meeting on General Relativity, Ed. by H. Kleinert, R. T. Jantzen, and R. Ruffini (World Sci., Singapore, 2008), p. 1404; arXiv:gr-qc/0612134.Google Scholar
  17. 17.
    M. Rasetti and T. Regge, Physica A 80, 217 (1975).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Phys. Rev. B 76, 165409 (2007).Google Scholar
  19. 19.
    A. D. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968); reprinted in Gen. Rel. Grav. 32, 365 (2000).ADSGoogle Scholar
  20. 20.
    Ya. B. Zel’dovich, JETP Lett. 6, 345 (1967).ADSGoogle Scholar
  21. 21.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78,063528 (2008), arXiv:0806.2805.Google Scholar
  22. 22.
    E. C. Thomas, F. R. Urban, and A. R. Zhitnitsky, arXiv:0904.3779.Google Scholar
  23. 23.
    H. Nastase, arXiv:0904.3604.Google Scholar
  24. 24.
    T. Takahashi and J. Soda, arXiv:0904.0554 [hep-th].Google Scholar
  25. 25.
    T. Sotiriou, M. Visser, and S. Weinfurtner, arXiv:0904.4464.Google Scholar
  26. 26.
    F. R. Klinkhamer, arXiv:0810.1446; F. R. Klinkhamer and M. Schreck, Phys. Rev. D 78, 085026 (2008), arXiv:0809.3217.Google Scholar
  27. 27.
    J. D. Bjorken, in Emergent Gauge Bosons, 4th Workshop on “What Comes Beyond the Standard Model?” Bled, Slovenia, 17–27 July, 2001; hepth/0111196.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations