JETP Letters

, Volume 89, Issue 10, pp 519–524 | Cite as

“Burning and sticking” model for a porous material: suppression of the topological phase transition due to the backbone reinforcement effect

  • A. S. Ioselevich
  • D. S. Lyubshin
Condensed Matter

Abstract

We introduce and study the “burning-and-sticking” (BS) lattice model for the porous material that involves sticking of emerging finite clusters to the mainland. In contrast with other single-cluster models, it does not demonstrate any phase transition: the backbone exists at arbitrarily low concentrations. The same is true for hybrid models, where the sticking events occur with probability q: the backbone survives at arbitrarily low q. Disappearance of the phase transition is attributed to the backbone reinforcement effect, generic for models with sticking. A relation between BS and the cluster-cluster aggregation is briefly discussed.

PACS numbers

61.43.-j 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Disorder and Granular Media, Ed. by D. Bideau and A. Hansen (North-Holland, Amsterdam, 1993); Porous Metals and Metallic Foams, Proc. of the Intern. Conf. on MetFoam2007, Ed. by L. P. Lefebvre, J. Banhart, and D. Dunand (DEStech Publ., 2007).Google Scholar
  2. 2.
    Kinetics of Aggregation and Gelation, Ed. by F. Family and D. P. Landau (Elsevier, Amsterdam, 1984).Google Scholar
  3. 3.
    Aerogels, Ed. by J. Fricke (Springer, Heidelberg, 1986).Google Scholar
  4. 4.
    A. S. Ioselevich and D. S. Lyubshin, JETP Lett. 79, 286 (2004).CrossRefGoogle Scholar
  5. 5.
    A. S. Ioselevich and D. S. Lyubshin, JETP Lett. 89, 486 (2009).Google Scholar
  6. 6.
    F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).Google Scholar
  7. 7.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Fransis, London, 1994).Google Scholar
  8. 8.
    A. Bunde and S. Havlin, Percolation I, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).Google Scholar
  9. 9.
    R. Jullien and R. Botet, Aggregation and Fractal Aggregates (World Sci., Singapore, 1987).MATHGoogle Scholar
  10. 10.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).CrossRefADSGoogle Scholar
  11. 11.
    R. Botet, R. Jullien, and M. Kolb, Phys. Rev. A 30, 2150 (1984).CrossRefADSGoogle Scholar
  12. 12.
    J. C. Gimel, D. Durand, and T. Nicolai, Phys. Rev. B 51, 11348 (1995).CrossRefADSGoogle Scholar
  13. 13.
    A. Hasmy and R. Jullien, Phys. Rev. E 53, 1789 (1996).CrossRefADSGoogle Scholar
  14. 14.
    M. Rottereau, J. C. Gimel, T. Nicolai, and D. Durand, Eur. Phys. J. E 15, 133 (2004); Eur. Phys. J. E 15, 141 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. S. Ioselevich
    • 1
    • 2
  • D. S. Lyubshin
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Physics and TechnologyMoscowRussia

Personalised recommendations