JETP Letters

, Volume 89, Issue 8, pp 414–418 | Cite as

Relaxation of radiation-induced defects in CuO

Article

Abstract

The relaxation of radiation-induced defects in the CuO polycrystal and nanoceramic with the particle size d = 15 nm irradiated by an electron dose of F = 5 × 1018 cm−2 has been studied. In the irradiated samples, a strong susceptibility increase with decreasing temperature T < 150 K is observed. This increase is due to the formation of ferromagnetic polarons in the antiferromagnetic matrix near the defects. The structural symmetry distortion makes the samples unstable. The time variations of the magnetic properties in the CuO samples prepared by different methods are compared.

PACS numbers

61.72.J- 61.80.-x 75.50.Ee 81.40.Wx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Dagotto, Nanoscale Phase Separation and Collossal Magnetoresistance (Springer, Berlin, 2002).Google Scholar
  2. 2.
    K. P. Belov, Yu. D. Tret’yakov, L. I. Koroleva, et al., Halcogenide Spinels as Magnetic Semiconductors (Mosc. Gos. Univ., Moscow, 1981) [in Russian].Google Scholar
  3. 3.
    E. L. Nagaev, Physics of Magnetic Semiconductors (Nauka, Moscow, 1979; Mir, Moscow, 1983).Google Scholar
  4. 4.
    S. Methfessel and D. Mattis, Magnetic Semiconductors (Springer, Berlin, 1968; Mir, Moscow, 1972).Google Scholar
  5. 5.
    J. B. Forsyth, P. J. Brown, and B. M. Wahklin, J. Phys. C 21, 2917 (1988).CrossRefADSGoogle Scholar
  6. 6.
    R. Carlin, Magnetochemistry (Springer, Berlin, 1986; Mir, Moscow, 1989).Google Scholar
  7. 7.
    T. I. Arbuzova, A. A. Samokhvalov, I. B. Smolyak, et al., J. Magn. Magn. Mater. 95, 168 (1991).CrossRefADSGoogle Scholar
  8. 8.
    M. O’Keeffe and F. S. Stone, J. Phys. Chem. Solids 23, 261 (1962).CrossRefGoogle Scholar
  9. 9.
    T. I. Arbuzova, I. B. Smolyak, S. V. Naumov, and A. A. Samokhvalov, Fiz. Tverd. Tela 40, 1876 (1998) [Phys. Solid State 40, 1702 (1998)].Google Scholar
  10. 10.
    A. Punnoose, H. Magnone, and M. S. Seehra, Phys. Rev. B 64, 174420 (2001).Google Scholar
  11. 11.
    T. I. Arbuzova, S. V. Naumov, and E. F. Kozlov, Fiz. Tverd. Tela 47, 1309 (2005) [Phys. Solid State 47, 1358 (2005)].Google Scholar
  12. 12.
    R. H. Kodama and A. E. Bercowitz, Phys. Rev. B 59, 6321 (1999).CrossRefADSGoogle Scholar
  13. 13.
    M. F. Hansen and S. Morup, J. Magn. Magn. Mater. 184, 262 (1995).CrossRefADSGoogle Scholar
  14. 14.
    T. I. Arbuzova, S. V. Naumov, V. L. Arbuzov, and A. P. Druzhkov, Fiz. Tverd. Tela 51, 904 (2009) [Phys. Solid State 51, (2009, in press)].Google Scholar
  15. 15.
    V. V. Kirsanov, N. N. Musin, and E. L. Shamarina, Sverkhprovodimost: Fiz. Khim. Tekh. 7, 427 (1994).Google Scholar
  16. 16.
    B. I. Belevtsev, V. B. Krasovitsky, and V. Bobkov, cond-mat 1, 0001372 (2000).Google Scholar
  17. 17.
    T. I. Arbuzova, S. V. Naumov, and V. L. Arbuzov, Fiz. Tverd. Tela 45, 1440 (2003) [Phys. Solid State 45, 1513 (2003)].Google Scholar
  18. 18.
    K. H. Lee, H. J. Kim, H. L. Park, et al., Solid State Com. 135, 420 (2005).CrossRefADSGoogle Scholar
  19. 19.
    S. Zhon, E. Cizmàr, K. Potzger, et al., cond-mat 1, 0902.2092 (2009).Google Scholar
  20. 20.
    T. Chanier, I. Opahle, M. Sargolzaei, et al., Phys. Rev. Lett. 100, 026405 (2008).Google Scholar
  21. 21.
    P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).Google Scholar
  22. 22.
    I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. I. Arbuzova
    • 1
  • S. V. Naumov
    • 1
  • V. L. Arbuzov
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations