Advertisement

JETP Letters

, Volume 89, Issue 5, pp 249–252 | Cite as

Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis

  • V. N. Pavlenko
  • Yu. I. LatyshevEmail author
  • J. Chen
  • M. B. Gaifullin
  • A. Irzhak
  • S. -J. Kim
  • P. H. Wu
Condensed Matter

Abstract

We studied a response of Bi-2212 mesa type structures to 100 GHz microwave radiation. We found that applying magnetic field of about 0.1 T across the layers enables to observe collective Shapiro step response corresponding to a synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At high microwave power we observed up to 10th harmonics of the fundamental Shapiro step. Besides, we found microwave induced flux-flow step position of which is proportional to the square root of microwave power and that can exceed at high enough powers 1 THz operating frequency of IJJ oscillations.

PACS numbers

74.25.Qt 74.72.Hs 74.78.Fk 85.25.Pb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev. Lett. 68, 239 (1992).CrossRefADSGoogle Scholar
  2. 2.
    H. B. Wang, P. H. Wu, and T. Yamashita, Phys. Rev. Lett. 87, 107002 (2001).Google Scholar
  3. 3.
    T. Koyama and M. Tachiki, Phys. Rev. B 54, 16183 (1996).Google Scholar
  4. 4.
    S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys. 73, 2411 (1993).CrossRefADSGoogle Scholar
  5. 5.
    Yu. I. Latyshev, M. B. Gaifullin, T. Yamashita, et al., Phys. Rev. Lett. 87, 247007 (2001).Google Scholar
  6. 6.
    Yu. I. Latyshev, S.-J. Kim, and T. Yamashita, IEEE Trans. on Appl. Supercond. 9, 4312 (1999).CrossRefGoogle Scholar
  7. 7.
    J. U. Lee, J. E. Nordman, and G. Hohenwarter, Appl. Phys. Lett. 67, 1471 (1995).CrossRefADSGoogle Scholar
  8. 8.
    A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).CrossRefGoogle Scholar
  9. 9.
    A. Irie and G. Oya, Appl. Supercond. 5, 3267 (1995).CrossRefGoogle Scholar
  10. 10.
    T. Clauss, T. Uchida, M. Mößle, et al., Appl. Phys. Lett. 85, 3166 (2004).CrossRefADSGoogle Scholar
  11. 11.
    Yu. I. Latyshev, P. Monceau, and V. N. Pavlenko, Physica C 293, 174 (1997).CrossRefADSGoogle Scholar
  12. 12.
    F. L. Barkov, M. V. Fistul, and A. V. Ustinov, Phys. Rev. B 70, 134515 (2004).Google Scholar
  13. 13.
    M. B. Gaifullin, Yuji Matsuda, N. Chikumoto, et al., Phys. Rev. Lett. 84, 2945 (2000).CrossRefADSGoogle Scholar
  14. 14.
    M. B. Gaifullin, K. Hirata, S. Ooi, et al., Physica C 468, 1896 (2008).CrossRefADSGoogle Scholar
  15. 15.
    A. E. Koshelev, Phys. Rev. Lett. 83, 187 (1999).CrossRefADSGoogle Scholar
  16. 16.
    Y. Yamada, Koji Nakajima, and Kensuke Nakajima, J. Kor. Phys. Soc. 48, 1053 (2006).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. N. Pavlenko
    • 1
  • Yu. I. Latyshev
    • 1
    Email author
  • J. Chen
    • 2
  • M. B. Gaifullin
    • 3
  • A. Irzhak
    • 4
  • S. -J. Kim
    • 5
  • P. H. Wu
    • 2
  1. 1.Institute of Radio-Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Nanjing University RISENanjingChina
  3. 3.Loughborough UniversityLoughboroughUK
  4. 4.Moscow Institute of Steel and AlloysMoscowRussia
  5. 5.Cheju National UniversityJeju-doKorea

Personalised recommendations