JETP Letters

, Volume 89, Issue 5, pp 233–237 | Cite as

Singularities of the dielectric function of InN in the region of a direct optical transition

  • L. A. Falkovsky
Condensed Matter


The dispersion of the dielectric function of InN with the wurtzite structure in the frequency region near the fundamental energy gap has been analyzed with the inclusion of temperature and carrier density effects. The linearity of the electron spectrum in a wide energy range leads to a logarithmic singularity of the real part of the dielectric function, which is associated with the direct electronic transitions and, correspondingly, to an anomalously large dielectric constant. The imaginary part becomes constant above the absorption threshold. The values calculated without any free parameters are in good agreement with the experimental data and ab initio calculations.

PACS numbers

71.15.Mb 71.20.Nr 78.20.Ci 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Y. Davydov et al., Phys. Stat. Solidi B 229, R1 (2002).CrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Wu, W. Walukiewicz, K. M. Yu, et al., Appl. Phys. Lett. B 80, 3967 (2002).CrossRefADSGoogle Scholar
  3. 3.
    Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. Appl. Phys., Part 1 42, 2549 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Sher, M. van Schilfgaarde, M. A. Berding, et al., MRS Internet J. Nitride Semicond. Res. 4S1, G5.1 (1999).Google Scholar
  5. 5.
    F. Bechstedt and J. Furthmüller, J. Cryst. Growth 246, 315 (2002).CrossRefADSGoogle Scholar
  6. 6.
    J. Wu, W. Walukiewicz, W. Shan, et al., Phys. Rev. B 66, 201403 (2002).Google Scholar
  7. 7.
    S. P. Fu and Y. F. Chen, Appl. Phys. Lett. 85, 1523 (2004).CrossRefADSGoogle Scholar
  8. 8.
    P. Rinke, M. Winkelnkemper, A. Qteish, et al., Phys. Rev. B 77, 075202 (2008).Google Scholar
  9. 9.
    E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957); E. O. Kane, in Band Theory and Transport Properties, Handbook on Semiconductors, Ed. by W. Paul (North-Holand, Amsterdam, 1982), Vol. 1, p. 195.CrossRefADSGoogle Scholar
  10. 10.
    D. Bagayoko, L. Franklin, H. Jin, and G. L. Zhao, Phys. Rev. B 76, 037101 (2007).Google Scholar
  11. 11.
    R. Goldhahn, P. Schley, A. T. Winzer, et al., J. Cryst. Growth 288, 273 (2006).CrossRefADSGoogle Scholar
  12. 12.
    J. Furthmüller, P. H. Hahn, F. Fuchs, and F. Bechstedt, Phys. Rev. B 72, 205106 (2005).Google Scholar
  13. 13.
    L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2006); L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007).CrossRefADSGoogle Scholar
  14. 14.
    L. A. Falkovsky, Phys. Rev. B 77, 193201 (2008).Google Scholar
  15. 15.
    J. S. Thakur, Y. V. Danylyuk, D. Haddat, et al., Phys. Rev. B 76, 035309 (2007).Google Scholar
  16. 16.
    R. Goldhahn, S. Shokovets, V. Cimalla, et al., Mater. Res. Soc. Symp. Proc. 743, L5.9 (2003).Google Scholar
  17. 17.
    A. Kasic, E. Valcheva, B. Monemar, et al., Phys. Rev. B 70, 115217 (2004).Google Scholar
  18. 18.
    R. Goldhahn, A. T. Winzer, V. Cimalla, et al., Superlatt. Microstruct. 36, 591 (2004).CrossRefADSGoogle Scholar
  19. 19.
    N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Falkovsky
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Vereshchagin Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations