Advertisement

JETP Letters

, Volume 89, Issue 3, pp 161–166 | Cite as

Formation and structure of a soliton in an antiferroelectric liquid crystal in an electric field

  • P. V. Dolganov
  • V. M. Zhilin
  • V. K. Dolganov
  • E. I. Kats
Condensed Matter

Abstract

The soliton structure in an antiferroelectric liquid crystal in an electric field is calculated in the discrete phenomenological Landau model for phase transitions. The anticlinic structure of the antiferroelectric crystal gives rise to nontrivial features of the soliton structure and the stability of the soliton. The soliton is topologically stable in a metastable state if the electric field is much higher than the field of antiferroelectric-helix unwinding. A structural transition with a step-like change in the orientation of molecules occurs as the soliton field varies. A peculiar soliton (synclinic pair) can be formed if the barrier between the anti- and ferroelectric structures is large. The calculation shows the possibility of a large electroclinic effect in the soliton, i.e., a variation in the molecular tilt angle in an electric field in the vicinity of the transition of the structure to the synclinic state.

PACS numbers

61.30.Cz 64.70.Md 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1994).Google Scholar
  2. 2.
    A. Michelson, L. Benguigui, and D. Cabib, Phys. Rev. A 16, 394 (1977).CrossRefADSGoogle Scholar
  3. 3.
    S. A. Pikin and V. L. Ingenbom, Usp. Fiz. Nauk 125, 251 (1978) [Sov. Phys. Usp. 21, 487 (1978)].Google Scholar
  4. 4.
    V. E. Dmitrienko and V. A. Belyakov, Zh. Eksp. Teor. Fiz. 78, 1568 (1980) [JETP 51, 787 (1980)].Google Scholar
  5. 5.
    M. Yamashita, Prog. Theor. Phys. 74, 622 (1985).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    N. Baytch, R. L. B. Selinger, J. V. Selinger, and R. Shashidhar, Phys. Rev. E 68, 041702 (2003).Google Scholar
  7. 7.
    X. Y. Wang and P. L. Taylor, Phys. Rev. Lett. 76, 640 (1996).CrossRefADSGoogle Scholar
  8. 8.
    X. Y. Wang, T. Kyu, A. M. Rudin, and P. L. Taylor, Phys. Rev. E 58, 5919 (1998).CrossRefADSGoogle Scholar
  9. 9.
    T. Qian and P. L. Taylor, Phys. Rev. E 60, 2978 (1999).CrossRefADSGoogle Scholar
  10. 10.
    A. Roy and N. V. Madhusudana, Eur. Phys. J. E 1, 319 (2000).Google Scholar
  11. 11.
    P. V. Dolganov and V. M. Zhilin, Phys. Rev. E 77, 031703 (2008).Google Scholar
  12. 12.
    B. Rovšek, M. Çepiç, and B. Žekš, Phys. Rev. E 54, R3113 (1996).Google Scholar
  13. 13.
    B. Rovšek, M. Çepiç, and B. Žekš, Phys. Rev. E 62, 3758 (2000).CrossRefADSGoogle Scholar
  14. 14.
    P. V. Dolganov, V. M. Zhilin, V. E. Dmitrienko, and E. I. Kats, Pis’ma Zh. Eksp. Teor. Fiz. 76, 579 (2002) [JETP Lett. 76, 498 (2002)].Google Scholar
  15. 15.
    D. A. Olson, X. F. Han, A. Cady, and C. C. Huang, Phys. Rev. E 66, 021702 (2002).Google Scholar
  16. 16.
    P. V. Dolganov, V. M. Zhilin, V. K. Dolganov, and E. I. Kats, Phys. Rev. E 67, 041716 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. V. Dolganov
    • 1
  • V. M. Zhilin
    • 1
  • V. K. Dolganov
    • 1
  • E. I. Kats
    • 2
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations