Advertisement

JETP Letters

, Volume 89, Issue 1, pp 50–52 | Cite as

Bell’s inequality with Dirac particles

  • S. Moradi
Quantum Information Science

Abstract

We study Bell’s inequality using the Bell states constructed from four component Dirac spinors. Spin operator is related to the Pauli-Lubanski pseudo vector which is relativistic invariant operator. By using Lorentz transformation, in both Bell states and spin operator, we obtain an observer independent Bell’s inequality, so that it is maximally violated as long as it is violated maximally in the rest frame.

PACS numbers

03.65.Ud 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ahn, H-J. Lee, Y. H. Moon, and S. W. Hwang, Phys. Rev. A 67, 012103 (2003).Google Scholar
  2. 2.
    P. M. Alsing and G. J. Milburn, Quant. Inf. Comput. 2, 487 (2002).zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. D. Bartlett and D. R. Terno, Phys. Rev. A 71, 012302 (2005).Google Scholar
  4. 4.
    P. Caban and J. Rembieliëski, Phys. Rev. A 68, 042107 (2003).Google Scholar
  5. 5.
    P. Caban and J. Rembieliëski, Phys. Rev. A 72, 012103 (2005).Google Scholar
  6. 6.
    P. Caban and J. Rembieliëski, Phys. Rev. A 74, 042103 (2006).Google Scholar
  7. 7.
    M. Czachor, Phys. Rev. A 55, 72 (1997).CrossRefADSGoogle Scholar
  8. 8.
    R. M. Gingrich and C. Adami, Phys. Rev. Lett. 89, 270402 (2002).Google Scholar
  9. 9.
    R. M. Gingrich, A. J. Bergou, and C. Adami, Phys. Rev. A 68, 042102 (2003).Google Scholar
  10. 10.
    N. L. Harshman, Phys. Rev. A 71, 022312 (2005).Google Scholar
  11. 11.
    T. F. Jordan, A. Shaji, and E. C. G. Sudarshan, Phys. Rev. A 73, 032104 (2006).Google Scholar
  12. 12.
    W. T. Kim and E. J. Son, Phys. Rev. A 71, 014102 (2005).Google Scholar
  13. 13.
    H. Li and J. Du, Phys. Rev. A 68, 022108 (2003).Google Scholar
  14. 14.
    H. Li and J. Du, Phys. Rev. A 70, 012111 (2004).Google Scholar
  15. 15.
    L. Lamata, M. A. Martin-Delgado, and E. Solano, Phys. Rev. Lett. 97, 250502 (2006).Google Scholar
  16. 16.
    D. Lee and E. Chang-Young, New J. Phys. 6, 67 (2004).CrossRefADSGoogle Scholar
  17. 17.
    Y. H. Moon, D. Ahn, and S. W. Hwang, Prog. Theor. Phys. 112, 219 (2004).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. Moradi, Phys. Rev. A 77, 024101 (2008).Google Scholar
  19. 19.
    J. Pachos and E. Solano, Quantum Inf. Comput. 3, 115 (2003).zbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Peres, P. F. Scudo, and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).Google Scholar
  21. 21.
    A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Peres and D. R. Terno, J. Mod. Opt. 50, 1165 (2003).zbMATHADSMathSciNetGoogle Scholar
  23. 23.
    A. Peres and D. R. Terno, Int. J. Quant. Inf. 1, 225 (2003).zbMATHCrossRefGoogle Scholar
  24. 24.
    J. Rembielinski and K. A. Smolinski, Phys. Rev. A 66, 052114 (2002).Google Scholar
  25. 25.
    F. Scudo, and D. R. Terno, Phys. Rev. Lett. 94, 078902 (2005).Google Scholar
  26. 26.
    H. Terashima and M. Ueda, Quant. Inf. Comput. 3, 224 (2003).zbMATHMathSciNetGoogle Scholar
  27. 27.
    H. Terashima and M. Ueda, Int. J. Quant. Inf. 1, 93 (2003).zbMATHCrossRefGoogle Scholar
  28. 28.
    D. R. Terno, Phys. Rev. A 67, 014102 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations