JETP Letters

, Volume 88, Issue 12, pp 795–798 | Cite as

Plasma wave propagation in a pair of carbon nanotubes

Plasma, Gases

Abstract

Plasma waves which propagate in a pair of parallel metallic carbon nanotubes are studied within the framework of the classical electrodynamics. Electronic excitations over the each nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. An explicit form of plasmons dispersion in terms of interaction between the bare plasmon modes of the individual surfaces of the nanotubes is presented in this Letter.

PACS numbers

41.20.Jb 42.25.Bs 73.22.Lp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Sato, Y. Tanaka, M. Kobayashi, and A. Hasegawa, Phys. Rev. B 48, 1947 (1993).CrossRefADSGoogle Scholar
  2. 2.
    P. Longe and S. M. Bose, Phys. Rev. B 48, 18239 (1993).CrossRefADSGoogle Scholar
  3. 3.
    M. F. Lin and K. W.-K. Shung, Phys. Rev. B 47, 6617 (1993).CrossRefADSGoogle Scholar
  4. 4.
    S. M. Bose, Phys. Lett. A 289, 255 (2001).CrossRefADSGoogle Scholar
  5. 5.
    B. Vasvari, Phys. Rev. B 55, 7993 (1997).CrossRefADSGoogle Scholar
  6. 6.
    J. Y. Lien and M. F. Lin, Phys. Stat. Solidi C 2, 512 (2007).CrossRefGoogle Scholar
  7. 7.
    G. Gumbs and A. Balassis, Phys. Rev. B 68, 075405 (2003).Google Scholar
  8. 8.
    R. Perez and W. Que, J. Phys.: Condens. Matter 17, L367 (2005).CrossRefADSGoogle Scholar
  9. 9.
    M. Kobayashi, O. Sato, Y. Tanaka, and A. Hasegawa, J. Phys. Soc. Jpn. 63, 2010 (1994).CrossRefGoogle Scholar
  10. 10.
    C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 53, 10225 (1996).Google Scholar
  11. 11.
    X. Jiang, Phys. Rev. B 54, 13487 (1996).Google Scholar
  12. 12.
    Y.-N. Wang and Z. L. Miskovic, Phys. Rev. A 69, 022901 (2004).Google Scholar
  13. 13.
    D. J. Mowbray, Z. L. Miskovic, F. O. Goodman, and Y.-N. Wang, Phys. Rev. B 70, 195418 (2004).Google Scholar
  14. 14.
    D. J. Mowbray, Z. L. Miskovic, and F. O. Goodman, Phys. Rev. B 74, 195435 (2006).Google Scholar
  15. 15.
    L. Wei and Y.-N. Wang, Phys. Rev. B 75, 193407 (2007).Google Scholar
  16. 16.
    T. Stockli, J. M. Bonard, A. Chatelain, et al., Phys. Rev. B 64, 115424 (2001).Google Scholar
  17. 17.
    A. Moradi and H. Khosravi, Phys. Lett. A 371, 1 (2007).CrossRefADSGoogle Scholar
  18. 18.
    A. Moradi and H. Khosravi, Phys. Rev. B 76, 113411 (2007).Google Scholar
  19. 19.
    A. Moradi, Phys. Lett. A 372, 5614 (2008).CrossRefADSGoogle Scholar
  20. 20.
    F. Bloch, Z. Phys. 363, 81 (1933).Google Scholar
  21. 21.
    A. L. Fetter, Ann. Phys. 81, 367 (1973).CrossRefADSGoogle Scholar
  22. 22.
    U. Schroter and A. Dereux, Phys. Rev. B 64, 125420 (2001).Google Scholar
  23. 23.
    M. S. Kushwaha and B. Djafari-Rouhani, Phys. Rev. B 67, 245320 (2003).Google Scholar
  24. 24.
    J. Liu, A. G. Rinzler, H. Dai, et al., Science 280, 1253 (1998).CrossRefGoogle Scholar
  25. 25.
    M. A. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar
  26. 26.
    A. Moradi, J. Phys. Chem. Solids 69, 2936 (2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations