JETP Letters

, Volume 88, Issue 11, pp 747–751 | Cite as

Proximity-induced superconductivity in graphene

  • M. V. Feigel’man
  • M. A. Skvortsov
  • K. S. Tikhonov
Condensed Matter

Abstract

We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, Tc, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T
Tc, and zero magnetic field, the density of states is characterized by a small gap EgTc resulting from the collective proximity effect. Transverse magnetic field Hg(T) ∝ Eg is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field Hg2(T).

PACS numbers

74.20.-z 74.78.-w 74.81.-g 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Novoselov et al., Science 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    A. H. Castro Neto et al., arxiv:0709.1163.Google Scholar
  3. 3.
    H. Heersche et al., Nature 446, 56 (2007); Xu Du, I. Skachko, and E. Andrei, Phys. Rev. B 77, 184507 (2008).CrossRefADSGoogle Scholar
  4. 4.
    K. Usadel, Phys. Rev. Lett. 25, 507 (1970).CrossRefADSGoogle Scholar
  5. 5.
    M. Titov, unpublished.Google Scholar
  6. 6.
    K. S. Tikhonov and S. V. Kopylov, unpublished.Google Scholar
  7. 8.
    M. Yu. Kupriyanov and V. F. Lukichev, Zh. Eksp. Teor. Fiz. 94, 139 (1987) [Sov. Phys. JETP 67, 1163 (1988)].Google Scholar
  8. 9.
    B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, arXiv:0804.2040.Google Scholar
  9. 10.
    W. Y. Shih and D. Stroud, Phys. Rev. B 32, 158 (1985).CrossRefADSGoogle Scholar
  10. 11.
    F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).Google Scholar
  11. 12.
    A. A. Golubov and M. Yu. Kupriyanov, Sov. Phys. JETP 69, 805 (1989).Google Scholar
  12. 13.
    P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigel’man, Phys. Rev. Lett. 87, 027002 (2001).Google Scholar
  13. 14.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 61, 2147 (1971) [Sov. Phys. JETP 34, 1144 (1972)].Google Scholar
  14. 15.
    J. S. Meyer and B. D. Simons, Phys. Rev. B 64, 134516 (2001).Google Scholar
  15. 16.
    B. Spivak and F. Zhou, Phys. Rev. Lett. 74, 2800 (1995).CrossRefADSGoogle Scholar
  16. 17.
    V. M. Galitskii and A. I. Larkin, Phys. Rev. Lett. 87, 087001 (2001).Google Scholar
  17. 18.
    M. V. Feigel’man, A. I. Larkin, and M. A. Skvortsov, Phys. Rev. Lett. 86, 1869 (2001).CrossRefADSGoogle Scholar
  18. 19.
    M. V. Feigel’man and A. I. Larkin, Chem. Phys. 235, 107(1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • M. V. Feigel’man
    • 1
    • 2
  • M. A. Skvortsov
    • 1
    • 2
  • K. S. Tikhonov
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations