Advertisement

JETP Letters

, Volume 88, Issue 11, pp 729–733 | Cite as

Density-functional calculation of the Coulomb repulsion and correlation strength in superconducting LaFeAsO

  • V. I. Anisimov
  • Dm. M. Korotin
  • S. V. Streltsov
  • A. V. Kozhevnikov
  • J. Kuneš
  • A. O. Shorikov
  • M. A. KorotinEmail author
Condensed Matter

Abstract

Constrained density functional theory scheme in Wannier functions formalism has been used to calculate Coulomb repulsion U and Hund’s exchange J parameters for Fe-3d electrons in LaFeAsO. Results strongly depend on the basis set. When O-2p, As-4p, and Fe-3d orbitals are included, computation results in U = 3–4 eV. With the basis set restricted to Fe-3d orbitals only, computation gives parameters corresponding to F 0 = 0.8 eV, J = 0.5 eV. Local Density Approximation combined with Dynamical Mean-Field Theory calculation with these parameters results in weakly correlated electronic structure.

PACS numbers

71.45.Gm 74.25.Jb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  2. 2.
    C. de la Cruz, Q. Huang, J. W. Lynn, et al., Nature 453, 899 (2008).CrossRefADSGoogle Scholar
  3. 3.
    P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev. Lett. 53, 2512 (1984); O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys. Rev. B 39, 1708 (1989); V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).CrossRefADSGoogle Scholar
  4. 4.
    I. V. Solovyev and M. Imada, Phys. Rev. B 71, 045103 (2005); F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger, Phys. Rev. B 74, 125106 (2006).Google Scholar
  5. 5.
    K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008).Google Scholar
  6. 6.
    T. Miyake and F. Aryasetiawan, Phys. Rev. B 77, 085122 (2008).Google Scholar
  7. 7.
    A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    L. Craco, M. S. Laad, S. Leoni, and H. Rosner, Phys. Rev. B 78, 134511 (2008).Google Scholar
  9. 9.
    A. O. Shorikov, M. A. Korotin, S. V. Streltsov, et al., arXiv: 0804.3283.Google Scholar
  10. 10.
    E. Z. Kurmaev, R. Wilks, A. Moewes, et al., Phys. Rev. B 78, 220503 (2008).Google Scholar
  11. 11.
    T. Kroll, S. Bonhommeau, T. Kachel, et al., Phys. Rev. B 78, 220502 (2008).Google Scholar
  12. 12.
    W. Malaeb, T. Yoshida, T. Kataoka, et al., J. Phys. Soc. Jpn. 77, 093714 (2008).Google Scholar
  13. 13.
    K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 77, 093711 (2008).Google Scholar
  14. 14.
    M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989); M. S. Hybertsen, E. B. Stechel, M. Schlüter, and D. R. Jennison, Phys. Rev. B 41, 11068 (1990); A. K. McMahan, J. F. Annett, and R. M. Martin, Phys. Rev. B 42, 6268 (1990).CrossRefADSGoogle Scholar
  15. 15.
    H. Eskes and G. A. Sawatzky, Phys. Rev. B 44, 9656 (1991).Google Scholar
  16. 16.
    Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Phys. Rev. Lett. 85, 1524 (2000); A. Macridin, M. Jarrell, Th. Maier, and G. A. Sawatzky, Phys. Rev. B 71, 134527 (2005); W.-G. Yin and W. Ku, J. Phys.: Conf. Ser. 108, 012032 (2008).CrossRefADSGoogle Scholar
  17. 17.
    A. E. Bocquet, T. Mizokawa, K. Morikawa, et al., Phys. Rev. B 53, 1161 (1996).CrossRefADSGoogle Scholar
  18. 18.
    I. A. Nekrasov, G. Keller, D. E. Kondakov, et al., Phys. Rev. B 72, 155106 (2005).Google Scholar
  19. 19.
    I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B 53, 7158 (1996).CrossRefADSGoogle Scholar
  20. 20.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975); O. Gunnarsson, O. Jepsen, and O.K. Andersen, Phys. Rev. B 27, 7144 (1983).CrossRefADSGoogle Scholar
  21. 21.
    S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, http://www.pwscf.org.
  22. 22.
    G. H. Wannier, Phys. Rev. 52, 191 (1937).zbMATHCrossRefADSGoogle Scholar
  23. 23.
    N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997); W. Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 89, 167204 (2002).CrossRefADSGoogle Scholar
  24. 24.
    D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).Google Scholar
  25. 25.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, et al., Phys. Rev. B 71, 125119 (2005).Google Scholar
  26. 26.
    Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, et al., Europ. Phys. J. B 65, 91 (2008).CrossRefADSGoogle Scholar
  27. 27.
    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, et al., J. Phys.: Condens. Matter 9, 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998); K. Held, I. A. Nekrasov, G. Keller, et al., Phys. Stat. Solidi B 243, 2599 (2006).CrossRefADSGoogle Scholar
  28. 28.
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. I. Anisimov
    • 1
  • Dm. M. Korotin
    • 1
  • S. V. Streltsov
    • 1
  • A. V. Kozhevnikov
    • 2
  • J. Kuneš
    • 3
  • A. O. Shorikov
    • 1
  • M. A. Korotin
    • 1
    Email author
  1. 1.Institute of Metal Physics RASYekaterinburgRussia
  2. 2.Joint Institute for Computational SciencesOak Ridge National Laboratory OakRidgeUSA
  3. 3.Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of PhysicsUniversity of AugsburgAugsburgGermany

Personalised recommendations