JETP Letters

, Volume 88, Issue 9, pp 578–581 | Cite as

On the search for time variation in the fine-structure constant: Ab initio calculation of HfF+

  • L. V. SkripnikovEmail author
  • N. S. Mosyagin
  • A. N. Petrov
  • A. V. Titov
Plasma, Gases


A technique based on the relativistic pseudopotential method is proposed to calculate the derivative of the electronic vibrational level energy with respect to the fine-structure constant α for heavy-element compounds. The effect of a small change in α on the frequency of a transition between the vibrational levels of the ground and first excited states of the molecular cation HfF+ is calculated. This information is necessary to prepare experiments aimed at determining the time variation in the fine-structure constant.

PACS numbers

06.20.Jr 06.30.Ft 31.30.Jv 33.20.Tp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac, Nature 139, 323 (1937).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    V. V. Flambaum, arXiv:0801.1994v1 [nucl-th] (2008).Google Scholar
  3. 3.
    V. V. Flambaum, Phys. Rev. A 73, 034101 (2006) [arXiv: physics/0601034].Google Scholar
  4. 4.
    E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    J. Doyle, B. Friedrich, R. Krems, and F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Rev. Mod. Phys. 78, 483 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    T. Kóhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys. 78, 1311 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. V. Flambaum and M. G. Kozlov, Phys. Rev. Lett. 99, 150801 (2007).Google Scholar
  9. 9.
    R. Stutz and E. Cornell, in Proc. of APS Meeting (2004), p. J1047+.Google Scholar
  10. 10.
    E. R. Meyer, J. L. Bohn, and M. P. Deskevich, Phys. Rev. A 73, 062108 (2006).Google Scholar
  11. 11.
    E. Cornell, private communication (2008).Google Scholar
  12. 12.
    J. Olsen and B. O. Roos, J. Chem. Phys. 89, 2185 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Titov and N. S. Mosyagin, Int. J. Quantum Chem. 71, 359 (1999).CrossRefGoogle Scholar
  14. 14.
    A. V. Titov, N. S. Mosyagin, T. A. Isaev, and A. N. Petrov, Phys. At. Nucl. 66, 1152 (2003).CrossRefGoogle Scholar
  15. 15.
    A. N. Petrov, N. S. Mosyagin, T. A. Isaev, and A. V. Titov, Phys. Rev. A 75, 030501(R) (2007). [arXiv: physics/ 0611254].Google Scholar
  16. 16.
    K. Andersson, M. R. A. Blomberg, M. P. Fülscher, et al., Quantum-chemical program package MOLCAS (1991).Google Scholar
  17. 17.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974).CrossRefGoogle Scholar
  18. 18.
    R. J. Buenker and S. Krebs, in Recent Advances in Multireference Methods, Ed. by K. Hirao (World Sci., Singapore, 1999), p. 1.CrossRefGoogle Scholar
  19. 19.
    A. B. Alekseyev, H. P. Liebermann, and R. J. Buenker, in Recent Advances in Relativistic Molecular Theory, Ed. by K. Hirao and Y. Ishikawa (World Sci., Singapore, 2004), p. 65.CrossRefGoogle Scholar
  20. 20.
    A. V. Titov, N. S. Mosyagin, A. B. Alekseyev, and R. J. Buenker, Int. J. Quantum Chem. 81, 409 (2001).CrossRefGoogle Scholar
  21. 21.
    T. Rosenband, D. B. Hume, P. O. Schmidt, et al., Science, p. 1154622 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • L. V. Skripnikov
    • 1
    • 2
    Email author
  • N. S. Mosyagin
    • 1
    • 2
  • A. N. Petrov
    • 1
    • 2
  • A. V. Titov
    • 1
    • 2
  1. 1.St. Petersburg State University (Petrodvorets Branch)PetrodvoretsRussia
  2. 2.Petersburg Nuclear Physics InstituteRussian Academy of SciencesGatchina, Leningrad regionRussia

Personalised recommendations