Advertisement

JETP Letters

, Volume 88, Issue 8, pp 524–530 | Cite as

High-spin-low-spin transition and the sequence of the phase transformations in the BiFeO3 crystal at high pressures

  • I. S. Lyubutin
  • A. G. Gavriliuk
  • V. V. Struzhkin
Condensed Matter

Abstract

The transition of Fe3+ ions from the high-spin (HS) state (S = 5/2) to the low-spin (LS) state (S = 1/2) has been observed in the BiFeO3 multiferroic crystal at high pressures in the range 45–55 GPa. This effect has been studied in high-pressure diamond-anvil cells by means of two experimental methods using synchrotron radiation: nuclear resonant forward scattering (NFS or synchrotron Mössbauer spectroscopy) and FeK β high-resolution X-ray emission spectroscopy (XES). The HS-LS transition correlates with anomalies in the magnetic, optical, transport, and structural properties of the crystal. At room temperature, the transition is not stepwise, but is extended in a pressure range of about 10 GPa due to thermal fluctuations between the high-spin and low-spin states. It has been found that the transition of the BiFeO3 insulator to the metal occurs only in the low-spin phase and the cause of all phase transitions is the HS-LS crossover.

PACS numbers

74.62.Fj 75.50.-y 78.70.En 81.40.Rs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47(4), 8 (2004).CrossRefGoogle Scholar
  2. 2.
    G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).CrossRefADSGoogle Scholar
  3. 3.
    G. A. Smolenskii, V. Yudin, E. Sher, and Yu. E. Stolypin, Sov. Phys. JETP 16, 622 (1963).ADSGoogle Scholar
  4. 4.
    Yu. N. Venevtsev, G. Zhdanov, and S. Solov’ev, Sov. Phys. Crystallogr. 4, 538 (1960).Google Scholar
  5. 5.
    P. Fischer, M. Polomskya, I. Sosnowska, and M. Szymanksi, J. Phys. C 13, 1931 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. D. Bucci, B. K. Robertson, and W. J. James, J. Appl. Crystallogr. 5, 187 (1972).CrossRefGoogle Scholar
  7. 7.
    I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).CrossRefADSGoogle Scholar
  8. 8.
    I. Sosnowska, M. Loewenhaupt, W. I. F. David, and R. Ibberson, Physica B 180–181, 117 (1992).CrossRefGoogle Scholar
  9. 9.
    A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin, et al., JETP 95, 101 (2002).CrossRefADSGoogle Scholar
  10. 10.
    J. Wang, J. Neaton, H. Zheng, et al., Science 299, 1719 (2003).CrossRefADSGoogle Scholar
  11. 11.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, et al., Pis’ma Zh. ’Eksp. Teor. Fiz. 82, 243 (2005) [JETP Lett. 82, 224 (2005)].Google Scholar
  12. 12.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, and I. A. Troyan, Pis’ma Zh. Éksp. Teor. Fiz. 86, 226 (2007) [JETP Lett. 86, 197 (2007)].Google Scholar
  13. 13.
    A. G. Gavriliuk, I. S. Lyubutin, and V. V. Struzhkin, Pis’ma Zh. Éksp. Teor. Fiz. 86, 604 (2007) [JETP Lett. 86, 532 (2007)].Google Scholar
  14. 14.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, et al., Phys. Rev. B 77, 155112–1 (2008).CrossRefADSGoogle Scholar
  15. 15.
    T. Kamimura, M. Sato, H. Takahashi, et al., J. Magn. Magn. Mater. 104–107, 255 (1992).CrossRefGoogle Scholar
  16. 16.
    H. E. King and C. T. Prewitt, Acta Crystallogr. Sect. B 38, 1877 (1982).CrossRefGoogle Scholar
  17. 17.
    K. Kusaba, Y. Syono, T. Kikegawa, and O. Shimomura, J. Phys. Chem. Solids 58, 241 (1997).CrossRefADSGoogle Scholar
  18. 18.
    L. A. Taylor and H. K. Mao, Science 170, 850 (1970).CrossRefADSGoogle Scholar
  19. 19.
    J.-P. Rueff, C.-C. Kao, V. V. Struzhkin, et al., Phys. Rev. Lett. 82, 3284 (1999).CrossRefADSGoogle Scholar
  20. 20.
    K. Tsutsumi, H. Nakamori, and K. Ichikawa, Phys. Rev. B 13, 929 (1976).CrossRefADSGoogle Scholar
  21. 21.
    B. Hermsmeier, C. S. Fadley, M. O. Krause, et al., Phys. Rev. Lett. 61, 2592 (1988).CrossRefADSGoogle Scholar
  22. 22.
    J. Badro, G. Fiquet, F. Guyot, et al., Science 300, 789 (2003).CrossRefADSGoogle Scholar
  23. 23.
    G. Peng, X. Wang, C. Randall, et al., Appl. Phys. Lett. 65, 2527 (1994).CrossRefADSGoogle Scholar
  24. 24.
    F. M. F. de Groot et al., Phys. Rev. B 51, 1045 (1995).CrossRefADSGoogle Scholar
  25. 25.
    X. Wang, F. M. F. de Groot, and S. P. Cramer, Phys. Rev. B 56, 4553 (1997).CrossRefADSGoogle Scholar
  26. 26.
    J. Badro, V. Struzhkin, J.-F. Shu, et al., Phys. Rev. Lett. 83, 4101 (1999).CrossRefADSGoogle Scholar
  27. 27.
    J.-P. Rueff, M. Krisch, Y. Q. Cai, et al., Phys. Rev. B 60, 14510 (1999).CrossRefADSGoogle Scholar
  28. 28.
    I. S. Lyubutin, A. G. Gavriliuk, V. V. Struzhkin, et al., Pis’ma Zh. ’Eksp. Teor. Fiz. 84, 610 (2006) [JETP Lett. 84, 518 (2006)].Google Scholar
  29. 29.
    A. G. Gavriliuk, J. F. Lin, I. S. Lyubutin, and V. V. Struzhkin, Pis’ma Zh. Éksp. Teor. Fiz. 84, 190 (2006) [JETP Lett. 84, 161 (2006)].Google Scholar
  30. 30.
    R. Ruffer and A. I. Chumakov, Hyperfine Interact. 97–98, 589 (1996).CrossRefGoogle Scholar
  31. 31.
    G. V. Smirnov, Hyperfine Interact. 123–124, 31 (1999).CrossRefGoogle Scholar
  32. 32.
    Yu. V. Shvyd’ko, Hyperfine Interact. 125, 173 (2000).CrossRefGoogle Scholar
  33. 33.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1951).CrossRefADSGoogle Scholar
  34. 34.
    S. G. Ovchinnikov, J. Phys.: Condens. Matter 17, S743 (2005).CrossRefADSGoogle Scholar
  35. 35.
    S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 808 (2003) [JETP Lett. 77, 676 (2003)].Google Scholar
  36. 36.
    S. G. Ovchinnikov, Zh. Éksp. Teor. Fiz. 134, 172 (2008) [JETP 107, 140 (2008)].Google Scholar
  37. 37.
    R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science 275, 654 (1997).CrossRefGoogle Scholar
  38. 38.
    S. Sadchev, Nat. Phys. 4, (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. S. Lyubutin
    • 1
  • A. G. Gavriliuk
    • 1
    • 2
  • V. V. Struzhkin
    • 3
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  3. 3.Geophysical LaboratoryCarnegie Institution of WashingtonWashington DCUSA

Personalised recommendations