JETP Letters

, 88:487 | Cite as

Optical and sound helical structures in a Mandelstam-Brillouin mirror

Atoms, Spectra, Radiations


It is shown theoretically that the phase conjugation of a speckle optical field in a Mandelstam-Brillouin mirror is accompanied by the excitation of helical hypersonic waves with a step equal to one-half of the optical wavelength. The excitation of these waves violates the initial isotropy of the dielectric medium. The predicted effect admits clear physical interpretation based on the angular momentum conservation. The angular momentum transfer from the light to the medium occurs in the vicinity of an optical singularity (optical vortex line) due to reversal of the light orbital angular momentum by the phase-conjugation mirror. The excitation of hypersonic waves transferring the angular momentum is the necessary condition for the reversal of the angular momentum of the reflected light.

PACS numbers

42.50.-p 42.55.-f 42.65.-k 43.25.+y 


  1. 1.
    B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Nauka, Moscow, 1985; Springer, Berlin, 1985).Google Scholar
  2. 2.
    V. V. Ragulsky, Wave-Front Reversal (Nauka, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    B. Ya. Zeldovich, V. I. Popobichev, V. V. Ragulsky, and F. S. Faizullov, Pis’ma Zh. Éksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].Google Scholar
  4. 4.
    N. G. Basov, I. G. Zubarev, A. B. Mironov, et al., Zh. Éksp. Teor. Fiz. 79, 1678 (1980) [Sov. Phys. JETP 52, 847 (1980)].ADSGoogle Scholar
  5. 5.
    F. A. Starikov, Yu. V. Dolgopolov, A. V. Kopalkin, et al., J. Phys. IV France 133, 683 (2006).CrossRefGoogle Scholar
  6. 6.
    J. F. Nye and M. V. Berry, Proc. R. Soc. London A 336, 165 (1974).MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    A. Yu. Okulov, J. Mod. Opt. 55, 241 (2008).MATHCrossRefADSGoogle Scholar
  8. 8.
    A. Yu. Okulov, J. Phys. B 41, 101001 (2008).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1980; Pergamon, Oxford, 1977).Google Scholar
  10. 10.
    J. Leach, M. J. Padgett, S. M. Barnett, et al., Phys. Rev. Lett. 88, 257901 (2002).Google Scholar
  11. 11.
    N. B. Baranova, B. Ya. Zeldovich, A. V. Mamaev, et al., Zh. Éksp. Teor. Fiz. 83, 1702 (1982) [Sov. Phys. JETP 56, 983 (1982)].ADSGoogle Scholar
  12. 12.
    A. Yu. Okulov, J. Opt. Soc. Am. B 7, 1045 (1990).CrossRefADSGoogle Scholar
  13. 13.
    K. Staliunas and C. O. Weiss, J. Opt. Soc. Am. B 12, 1142 (1995).CrossRefADSGoogle Scholar
  14. 14.
    Y. F. Chen and Y. P. Lan, Phys. Rev. A 64, 063807 (2001).Google Scholar
  15. 15.
    S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) [in Russian].Google Scholar
  16. 16.
    V. N. Tsytovich, Usp. Fiz. Nauk 177, 427 (2007) [Phys. Usp. 50, 409 (2007)].CrossRefGoogle Scholar
  17. 17.
    J.-L. Thomas and R. Marchiano, Phys. Rev. Lett. 91, 244302 (2003).Google Scholar
  18. 18.
    E. A. Zabolotskaya and R. V. Khokhlov, Akust. Zh. 15, 40 (1969) [Acoust. J. 15, 35 (1969)].Google Scholar
  19. 19.
    R. Marchiano, F. Coulouvrat, L. Ganjehi, and J.-L. Thomas, Phys. Rev. E 77, 016605 (2008).Google Scholar
  20. 20.
    R. Marchiano and J.-L. Thomas, Phys. Rev. E 71, 066616 (2005).Google Scholar
  21. 21.
    N. G. Basov, V. F. Efimkov, I. G. Zubarev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 28, 215 (1978) [JETP Lett. 28, 197 (1978)].Google Scholar
  22. 22.
    V. S. Liberman and B. Ya. Zeldovich, Phys. Rev. A 46, 5199 (1992).CrossRefADSGoogle Scholar
  23. 23.
    J. Ruseckas, G. Juzelinas, P. Ohberg, and S. M. Barnett, Phys. Rev. A 76, 053822 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations