JETP Letters

, 88:307 | Cite as

On the formation of freak waves on the surface of deep water

  • A. I. Dyachenko
  • V. E. Zakharov


Numerical simulation of the fully nonlinear water equations demonstrates the existence of giant breathers on the surface of deep water. The numerical analysis shows that this breather (or soliton of envelope) does not loose energy. The existence of such a breather can explain the appearance of freak waves.

PACS numbers

02.60.Cb 47.15.Hg 92.10.-c 


  1. 1.
    V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).CrossRefADSGoogle Scholar
  2. 2.
    T. R. Akylas, J. Fluid Mech. 198, 387 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    T. R. Akylas, J. Fluid Mech. 224, 417 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    K. B. Dysthe, Proc. R. Soc. London A 369, 105 (1979).zbMATHADSCrossRefGoogle Scholar
  5. 5.
    K. Trulsen and K. B. Dysthe, Waves Motion 24, 281 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Clamond and J. Grue, C. R. Mecanique 330, 575 (2002).CrossRefzbMATHGoogle Scholar
  7. 7.
    A. I. Dyachenko, Dokl. Math. 63, 115 (2001).Google Scholar
  8. 8.
    S. V. Manakov, JETP Lett. 25, 533 (1977).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations