Advertisement

JETP Letters

, Volume 88, Issue 5, pp 289–294 | Cite as

f(R) Cosmology from q-theory

  • F. R. Klinkhamer
  • G. E. Volovik
Article

Abstract

From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds.

PACS numbers

04.20.Cv 11.30.Cp 95.36.+x 98.80.Jk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).MATHGoogle Scholar
  2. 2.
    E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006); hep-th/0603057.MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    T. P. Sotiriou and V. Faraoni, gr-qc/0805.1726.Google Scholar
  4. 4.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).Google Scholar
  5. 5.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008), gr-qc/0711.3170.Google Scholar
  6. 6.
    F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008); gr-qc/0806.2805.Google Scholar
  7. 7.
    G. E. Volovik, JETP Lett. 79, 101 (2004), hep-ph/0309144.CrossRefADSGoogle Scholar
  8. 8.
    F. R. Klinkhamer and G. E. Volovik, Phys. Lett. A 347, 8 (2005), gr-qc/0503090.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    C. Barcelo, JETP Lett. 84, 635 (2007), gr-qc/0611090.CrossRefADSGoogle Scholar
  10. 10.
    F.R. Klinkhamer, Phys. Rev. D 78, 083533 (2008); gr-qc:0803.0281.Google Scholar
  11. 11.
    C. D. Froggatt, R. Nevzorov, H. B. Nielsen, and D. Thompson, hep-ph/0806.3190.Google Scholar
  12. 12.
    T. V. Ruzmaikina and A. A. Ruzmaikin, Zh. Éksp. Teor. Fiz. 57, 680 (1969) [Sov. Phys. JETP 30, 372 (1970)].ADSGoogle Scholar
  13. 13.
    B. N. Breizman, V. Ts. Gurovich, and V. P. Sokolov, Zh. Éksp. Teor. Fiz. 59, 288 (1970) [Sov. Phys. JETP 32, 155 (1971)].ADSGoogle Scholar
  14. 14.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Starobinsky, JETP Lett. 86, 157 (2007), astro-ph/0706.2041.CrossRefADSGoogle Scholar
  16. 16.
    T. Kobayashi and K. Maeda, astro-ph/0807.2503.Google Scholar
  17. 17.
    S. Nojiri and S. D. Odintsov, Phys. Rev. D 72, 023003 (2005), hep-th/0505215.Google Scholar
  18. 18.
    E. Komatsu et al., astro-ph/0803.0547v1.Google Scholar
  19. 19.
    T. Padmanabhan, gr-qc/0807.2356.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of Karlsruhe (TH)KarlsruheGermany
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyHelsinkiFinland
  3. 3.Landau Institute for Theoretical Physics RASMoscowRussia

Personalised recommendations