JETP Letters

, Volume 88, Issue 4, pp 264–267 | Cite as

Stationary precession topological solitons with nonzero Hopf invariant in a uniaxial ferromagnet

Condensed Matter

Abstract

Three-dimensional stationary precession solitons with nonzero Hopf indices are found numerically by solving the Landau-Lifshitz equation. The structure and existence domain of the solitons are found.

PACS numbers

03.50.-k 11.27.+d 47.32.Cc 75.10.Hk 75.60.Ch 94.05.Fg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bott and L. W. Too, Differential Forms in Algebraic Topology (Springer, New York, 1982).MATHGoogle Scholar
  2. 2.
    L. D. Faddeev, IAS Princeton, IAS-Report No. 75-QS70 (1975).Google Scholar
  3. 3.
    L. D. Faddeev and A. J. Niemi, Nature 387, 58 (1997).CrossRefGoogle Scholar
  4. 4.
    L. D. Faddeev and A. J. Niemi, hep-th/9705176 (1997).Google Scholar
  5. 5.
    R. A. Battye and P. M. Sutcliffe, Phys. Rev. Lett. 387, 58 (1997).Google Scholar
  6. 6.
    J. Gladikowski and M. Hellmund, Phys. Rev. D 56, 5194 (1997).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 46, 401 (1977).ADSMathSciNetGoogle Scholar
  8. 8.
    I. E. Dzyloshinskii and B. A. Ivanov, Pis’ma Zh. Éksp. Teor. Fiz. 29, 592 (1979) [JETP Lett. 29, 540 (1979)].Google Scholar
  9. 9.
    G. M. Derrick, J. Math. Phys. 5, 1252 (1964).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).CrossRefADSGoogle Scholar
  11. 11.
    N. Papanicolaou and T. N. Tomaras, Nucl. Phys. B 360, 425 (1991).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    T. Okuno, K. Mibu, and T. Shinjo, J. Appl. Phys. 95, 3612 (2004).CrossRefADSGoogle Scholar
  13. 13.
    G. E. Volovik, cond-mat/0701180 (2007).Google Scholar
  14. 14.
    Yu. M. Bunkov and G. E. Volovik, Phys. Rev. Lett. 98, 265302 (2007).Google Scholar
  15. 15.
    Yu. M. Bunkov and G. E. Volovik, J. Low Temp. Phys. 150, 135 (2008).CrossRefADSGoogle Scholar
  16. 16.
    Yu. M. Bunkov and G. E. Volovik, Physica C 468, 609 (2008).CrossRefADSGoogle Scholar
  17. 17.
    A. B. Borisov, JETP Lett. 76, 84 (2002).CrossRefADSGoogle Scholar
  18. 18.
    N. R. Cooper, Phys. Rev. Lett. 82, 1554 (1999).CrossRefADSGoogle Scholar
  19. 19.
    B. A. Ivanov and A. M. Kosevich, Pis’ma Zh. Éksp. Teor. Fiz. 24, 495 (1976) [JETP Lett. 24, 454 (1976)].Google Scholar
  20. 20.
    T. Ioannidou and P. M. Sutcliffe, Physica D 150, 118 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    P. Sutcliffe, Phys. Rev. B 76, 184439 (2007).CrossRefADSGoogle Scholar
  22. 22.
    J. Tjon and J. Wright, Phys. Rev. B 15, 3470 (1977).CrossRefGoogle Scholar
  23. 23.
    A. Kundu and Y. P. Rybakov, J. Phys. 15, 269 (1982).MathSciNetGoogle Scholar
  24. 24.
    B. N. Pshenichnyi and Yu. M. Danilin, Numerical Methods in Extremal Problems (Nauka, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations