JETP Letters

, Volume 88, Issue 3, pp 167–171 | Cite as

Measurements of turbulent magnetic diffusivity in a liquid-gallium flow

  • S. A. Denisov
  • V. I. Noskov
  • R. A. Stepanov
  • P. G. Frick
Plasma, Gases


Direct measurements of the effective conductivity (magnetic diffusivity) in the turbulent flow of a liquid metal have been performed. An nonstationary turbulent flow of a gallium alloy has been excited in a closed toroidal channel with dielectric walls. The Reynolds number reaches a maximum value of Re ≈ 106, which corresponds to the magnetic Reynolds number Rm ≈ 1. The conductivity of the metal in the channel has been determined from the phase shift of forced harmonic oscillations in a series RLC circuit whose inductance is a toroidal coil wound around the channel. The maximum deviation of the effective conductivity of the turbulent medium from the ohmic conductivity of the metal is about 1%.

PACS numbers

47.65.-d 52.65.Kj 91.25.Cw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Steenbek, F. Krause, and K.-H. Rädler, Z. Naturforsch. Ser. E 21, 369 (1966).ADSGoogle Scholar
  2. 2.
    G. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1980).Google Scholar
  3. 3.
    Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokolov, Magnetic Fields in Astrophysics (Inst. Kosm. Issl., Moscow, 2006) [in Russian].Google Scholar
  4. 4.
    R. Stepanov, R. Volk, S. Denisov, et al., Phys. Rev. E 73, 046310 (2006).Google Scholar
  5. 5.
    A. B. Reighard and M. R. Brown, Phys. Rev. Lett. 86, 2794 (2001).CrossRefADSGoogle Scholar
  6. 6.
    V. Noskov, S. Denisov, P. Frick, et al., Europ. Phys. J. B 41, 561 (2004).CrossRefADSGoogle Scholar
  7. 7.
    S. A. Denisov, V. I. Noskov, A. N. Sukhanovskii, and P. G. Frik, Izv. Akad. Nauk, Ser. Mekh. Zhidkosti Gaza 6, 73 (2001).Google Scholar
  8. 8.
    S. P. Yatsenko, Gallium: Reaction with Metals (Nauka, Moscow, 1974) [in Russian].Google Scholar
  9. 9.
    F. Krause and K.-H. Rädler, Mean-Field Magnetohydro-dynamics and Dynamo Theory (Akademie-Verlag, Berlin, 1980).Google Scholar
  10. 10.
    H. Schlihting, Boundary-Layer Theory (McGraw-Hill, New York, 1955; Mir, Moscow, 1969).Google Scholar
  11. 11.
    Ya. B. Zeldovich, Zh. Éksp. Teor. Fiz. 31, 154 (1956) [Sov. Phys. JETP 4, 460 (1956)].Google Scholar
  12. 12.
    L. L. Kitchatinov, V. V. Pipin, and G. Rüdiger, Astron. Nachrichten 315, 157 (1994).zbMATHCrossRefADSGoogle Scholar
  13. 13.
    K.-H. Rädler and R. Stepanov, Phys. Rev. E 73, 056311 (2006).Google Scholar
  14. 14.
    K.-H. Rädler and R. Stepanov, Geophys. Astrophys. Fluid Dynamics 100, 379 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. A. Denisov
    • 1
  • V. I. Noskov
    • 1
  • R. A. Stepanov
    • 1
  • P. G. Frick
    • 1
  1. 1.Institute of Continuous Media Mechanics, Ural DivisionRussian Academy of SciencesPermRussia

Personalised recommendations