Advertisement

JETP Letters

, Volume 88, Issue 2, pp 118–122 | Cite as

Spin-glass state of Fe/Cr multilayer structures with ultrathin iron layers

  • A. B. DrovosekovEmail author
  • N. M. Kreines
  • D. I. Kholin
  • A. V. Korolev
  • M. A. Milayev
  • L. N. Romashev
  • V. V. Ustinov
Condensed Matter

Abstract

The evolution of the magnetic properties of Fe/Cr superlattices with a decrease in the nominal thickness of the iron layers down to atomic dimensions at which these layers are not continuous has been analyzed. Investigations have been carried out with multilayer samples with Fe-layer thicknesses in a range of 2–6 Å and Cr-layer thicknesses of 10 and 20 Å. It has been found that the system with various Fe-layer thicknesses and at various temperatures exhibits various magnetic phases—superparamagnetic, magnetically ordered, and nonergodic—characterized by the dependence of the magnetization of the sample on its magnetic prehistory. It has been shown that the observed nonergodic phase has the properties of a spin glass. A qualitative phase diagram of the magnetic states of the system has been obtained.

PACS numbers

75.50.Lk 75.50.Tt 75.70.Cn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ya. Korenblit and E. F. Shender, Usp. Fiz. Nauk 157, 267 (1989) [Sov. Phys. Usp. 32, 139 (1989)].Google Scholar
  2. 2.
    K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).CrossRefADSGoogle Scholar
  3. 3.
    P. Vavassori, F. Spizzo, E. Angeli, et al., J. Magn. Magn. Mater. 262, 120 (2003).CrossRefADSGoogle Scholar
  4. 4.
    E. A. M. van Alphen and W. J. M. de Jonge, Phys. Rev. B 51, 8182 (1995).CrossRefADSGoogle Scholar
  5. 5.
    M. Carbucicchio, C. Grazzi, M. Rateo, et al., J. Magn. Magn. Mater. 215–216, 563 (2000).CrossRefGoogle Scholar
  6. 6.
    W. Kleemann, O. Petracic, Ch. Binek, et al., Phys. Rev. B 63, 134423 (2001).Google Scholar
  7. 7.
    O. Petracic, X. Chen, S. Bedanta, et al., J. Magn. Magn. Mater. 300, 192 (2006).CrossRefADSGoogle Scholar
  8. 8.
    D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999).CrossRefGoogle Scholar
  9. 9.
    A. B. Drovosekov, N. M. Kreines, M. A. Milyaev, et al., J. Magn. Magn. Mater. 290–291, 157 (2005).CrossRefGoogle Scholar
  10. 10.
    A. B. Drovosekov, N. M. Kreines, M. A. Milyaev, et al., Phys. Stat. Solidi C 3, 109 (2006).CrossRefGoogle Scholar
  11. 11.
    E. Kravtsov, V. Lauter-Pasyuk, H. J. Lauter, et al., Physica B 297, 118 (2001).CrossRefADSGoogle Scholar
  12. 12.
    N. Theodoropoulou, A. F. Hebard, M. Gabay, et al., J. Magn. Magn. Mater. 263, 32 (2003).CrossRefADSGoogle Scholar
  13. 13.
    R. S. Patel, A. K. Majumdar, A. K. Nigam, et al., arXiv:cond-mat/0504275 v1 (2005).Google Scholar
  14. 14.
    R. S. Patel, A. K. Majumdar, and A. K. Nigam, J. Magn. Magn. Mater. 309, 256 (2007).CrossRefADSGoogle Scholar
  15. 15.
    V. V. Ustinov, L. N. Romashev, M. A. Milyaev, et al., in Proc. of the XVII Intern. School-Seminar on New Magnetic Materials of Microelectronics, June 20–23, 2000 (Moscow, 2000), p. 588.Google Scholar
  16. 16.
    A. B. Drovosekov, N. M. Kreines, A. V. Korolev, et al., in Proc. of the XI Intern. Symp. on Nanophysics and Nanoelectronics, March 10–14, 2007 (Nizhn. Novgorod, 2007), Vol. 1, p. 220.Google Scholar
  17. 17.
    R. D. Zysler, C. A. Ramos, E. De Biasi, et al., J. Magn. Magn. Mater. 221, 37 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. B. Drovosekov
    • 1
    Email author
  • N. M. Kreines
    • 1
  • D. I. Kholin
    • 1
  • A. V. Korolev
    • 2
  • M. A. Milayev
    • 2
  • L. N. Romashev
    • 2
  • V. V. Ustinov
    • 2
  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations