JETP Letters

, Volume 87, Issue 12, pp 682–686 | Cite as

Passive scalar structures in peripheral regions of random flows

  • A. Chernykh
  • V. Lebedev
Plasma, Gases

Abstract

The statistical properties of the passive scalar near walls in random flows assuming a weakness of its diffusion have been investigated. Then, at advanced stages of the passive scalar mixing, its unmixed residue is concentrated in a narrow diffusive layer near the wall. The numerical simulations have revealed the structures responsible for the passive scalar transport to the bulk; these are passive scalar tongues pulled from the diffusive boundary layer. The passive scalar integrated along the wall possesses a well-pronounced scaling behavior. An analytical scheme, giving exponents of the integral passive scalar moments has been proposed. The exponents reasonably agree with the calculations in 3d.

PACS numbers

05.10.-a 05.20.-y 05.40.-a 47.27.-i 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, 1975).Google Scholar
  2. 2.
    U. Frisch, Turbulence: the Legacy of A. N. Kolmogorov (Cambridge Univ. Press, New York, 1995).MATHGoogle Scholar
  3. 3.
    J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge Univ. Press, Cambridge, 1989).MATHGoogle Scholar
  4. 4.
    A. Groisman and V. Steinberg, Nature 405, 53 (2000); Phys. Rev. Lett. 86, 934 (2001); Nature 410, 905 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S. K. Friedlander and K. H. Keller, Chem. Eng. Sci. 18, 365 (1963); J. C. Hill, Annu. Rev. Fluid Mech. 8, 135 (1976); R. Chella and J. M. Ottino, Chem. Eng. Sci. 39, 551 (1984).CrossRefGoogle Scholar
  6. 6.
    K. R. Sreenivasan and R. A. Antonia, Annu. Rev. Fluid Mech. 29, 435 (1997).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    B. I. Shraiman and E. D. Siggia, Rev. Nature (London) 405, 639 (2000).CrossRefADSGoogle Scholar
  8. 8.
    G. Falkovich, K. Gawdzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).CrossRefADSGoogle Scholar
  9. 9.
    P. K. Yeung, Annu. Rev. Fluid Mech. 34, 115 (2002).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J. Schumacher and K. R. Sreenivasan, Phys. Fluids 17, 125107 (2005).Google Scholar
  11. 11.
    V. Kantsler and V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005).Google Scholar
  12. 12.
    R. J. Miller, L. P. Dasi, and D. R. Webster, Exp. Fluids 44, 719 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Chertkov and V. Lebedev, Phys. Rev. Lett. 90, 034501, 134501 (2003).Google Scholar
  14. 14.
    V. V. Lebedev and K. S. Turitsyn, Phys. Rev. E 69, 036301 (2004).Google Scholar
  15. 15.
    A. A. Schekochihin, P. H. Haynes, and S. C. Cowley, Phys. Rev. E 70, 046304 (2004).Google Scholar
  16. 16.
    H. Salman and P. H. Haynes, Phys. Fluids 19, 067101 (2007).Google Scholar
  17. 17.
    T. Burghelea, E. Serge, and V. Steinberg, Phys. Rev. Lett. 92, 164501 (2004).Google Scholar
  18. 18.
    E. Gouillart, N. Kuncio, O. Dauchot, et al., Phys. Rev. Lett. 99, 114501 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. Chernykh
    • 1
    • 2
  • V. Lebedev
    • 3
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations