Advertisement

JETP Letters

, Volume 87, Issue 11, pp 645–648 | Cite as

Observation of a superfluid phase in solid helium

  • I. V. Kalinin
  • E. Kats
  • M. Koza
  • V. V. Lauter
  • H. Lauter
  • A. V. Puchkov
Condensed Matter

Abstract

Evidence of a superfluid liquid phase present in polycrystalline helium at a temperature of 0.2 K and a pressure of 51 bar has been obtained by means of inelastic neutron scattering. The superfluid component is absent at a temperature of 0.6 K and the same pressure. Thus, a “solid helium-superfluid helium” phase transition has been discovered. The sample of solid helium in a porous medium (silica aerogel) has been prepared with the use of a capillary blocking technique. The shape of the structure factor of the superfluid phase indicates the presence of clusters or the effects of a restricted geometry. The results may be used to explain the nonclassical rotational inertia phenomenon in solid helium (often referred to as supersolidity, Nature, 2004).

PACS numbers

61.12.Ex 67.40.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Andreev and I. M. Lifshits, Sov. Phys. JETP 29, 1107 (1969).ADSGoogle Scholar
  2. 2.
    A. J. Leggett, Phys. Rev. Lett. 25, 2543 (1970).CrossRefADSGoogle Scholar
  3. 3.
    E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004).CrossRefADSGoogle Scholar
  4. 4.
    E. L. Andronikashvili, Zh. Eksp. Teor. Fiz. 16, 780 (1946).Google Scholar
  5. 5.
    E. Kim and M. H. W. Chan, Science 305, 1941 (2005).CrossRefGoogle Scholar
  6. 6.
    A. C. Clark and M. H. W. Chan, J. Low Temp. Phys. 138, 853 (2005).CrossRefADSGoogle Scholar
  7. 7.
    E. Kim and M. H. W. Chan, Phys. Rev. Lett. 97, 115302 (2006).Google Scholar
  8. 8.
    M. Kondo et al., J. Low Temp. Phys. 148, 695 (2007).CrossRefADSGoogle Scholar
  9. 9.
    A. Penzev, Y. Yasuta, and M. Kubota, J. Low Temp. Phys. 148, 677 (2007).CrossRefADSGoogle Scholar
  10. 10.
    E. Blackburn et al., Phys. Rev. B 76, 024523 (2007).Google Scholar
  11. 11.
    I. A. Todoshchenko et al., JETP Lett. 85, 454 (2007).CrossRefADSGoogle Scholar
  12. 12.
    A. S. Rittner and J. D. Reppy, Phys. Rev. Lett. 98, 175302 (2007).Google Scholar
  13. 13.
    V. N. Grigor’ev et al., Phys. Rev. B 76, 224524 (2007).Google Scholar
  14. 14.
    Y. Mukharsky, O. Avenel, and E. Varoquaux, J. Low Temp. Phys. 148, 689 (2007).CrossRefADSGoogle Scholar
  15. 15.
    M. Boninsegni, Phys. Rev. Lett. 97, 80401 (2006).Google Scholar
  16. 16.
    A. F. Andreev, JETP Lett. 85, 585 (2007).CrossRefGoogle Scholar
  17. 17.
    N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).Google Scholar
  18. 18.
    S. Balibar and F. Caupin, J. Phys.: Condens. Matter 20, 173201 (2008).Google Scholar
  19. 19.
    H. Palevsky, K. Otnes, and K. E. Larsson, Phys. Rev. 112, 11 (1958).CrossRefADSGoogle Scholar
  20. 20.
    M. Cohen and R. P. Feynman, Phys. Rev. 107, 13 (1957).MATHCrossRefADSGoogle Scholar
  21. 21.
    L. D. Landau, J. Phys. USSR 11, 91 (1947).Google Scholar
  22. 22.
    O. W. Dietrich et al., Phys. Rev. A 5, 1377 (1972).CrossRefADSGoogle Scholar
  23. 23.
    H. R. Glyde et al., Phys. Rev. Lett. 84, 2646 (2000).CrossRefADSGoogle Scholar
  24. 24.
    H. J. Lauter, H. Godfrin, and V. L. P. Frank, NATO Anvanced Study Institute, Ser. B: Phys. (Plenum, New York, 1991), Vol. 257, p. 419.Google Scholar
  25. 25.
    I. V. Kalinin et al., Crystallogr. Rep. 52, 466 (2007).CrossRefADSGoogle Scholar
  26. 26.
  27. 27.
    I. V. Kalinin, H. Lauter, and A. V. Puchkov, JETP 105, 138 (2007).CrossRefADSGoogle Scholar
  28. 28.
    J. V. Pearce et al., Phys. Rev. Lett. 93, 145303 (2004).Google Scholar
  29. 29.
    M. R. Gibbs et al., J. Phys.: Condens. Matter 11, 603 (1999).CrossRefGoogle Scholar
  30. 30.
    E. Blackburn et al., Cond. Mat. Stat. Mech., arXiv: 3587, 0802 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. V. Kalinin
    • 1
  • E. Kats
    • 2
  • M. Koza
    • 2
  • V. V. Lauter
    • 3
  • H. Lauter
    • 2
  • A. V. Puchkov
    • 1
  1. 1.Institute of Physics and Power EngineeringObninsk, Kaluga regionRussia
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Spallation Neutron SourceOak Ridge National LaboratoryTennesseeUSA

Personalised recommendations