JETP Letters

, Volume 87, Issue 10, pp 581–585 | Cite as

Fractional quantum hall effect and vortex lattices

  • S. V. Iordanski


It is demonstrated that all observed fractions at moderate Landau-level fillings for the quantum Hall effect can be obtained without recourse to the phenomenological concept of composite fermions. The possibility of having the special topologically nontrivial many-electron wavefunctions is considered. Their group classification indicates the special values of the electron density in the ground states separated by a gap from the excited states.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Quantum Hall Effect, Ed. by R. Prange and S. M. Girvin (Springer, New York, 1987; Mir, Moscow, 1989).Google Scholar
  2. 2.
    New Perspectives in Quantum Hall Effects, Ed. by S. Das Sarma and A. Pinczuk (Wiley, New York, 1997).Google Scholar
  3. 3.
    R. B. Laughlin, Phys. Rev. B 22, 5632 (1981).CrossRefADSGoogle Scholar
  4. 4.
    R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).CrossRefADSGoogle Scholar
  5. 5.
    J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).CrossRefADSGoogle Scholar
  6. 6.
    J. K. Jain, Phys. Rev. B 41, 7653 (1990).CrossRefADSGoogle Scholar
  7. 7.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).CrossRefADSGoogle Scholar
  8. 8.
    V. K. Tkachenko, Zh. Éksp. Teor. Fiz. 49, 1876 (1965) [Sov. Phys. JETP 22, 1282 (1965)].Google Scholar
  9. 9.
    E. T. Whitaker and R. N. Watson, A Course of Modern Analysis, Part II (Cambridge Univ., Cambridge, 1927).Google Scholar
  10. 10.
    E. Brown, Phys. Rev. A 133, 1038 (1964).CrossRefADSGoogle Scholar
  11. 11.
    J. Zak, Phys. Rev. A 134, 1602 (1964).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    E. M. Lifshitz and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  13. 13.
    V. S. Khrapai, A. A. Shashkin, M. G. Trokina, et al., Phys. Rev. Lett. 99, 086802 (2007).Google Scholar
  14. 14.
    S. V. Iordanski, Pis’ma Zh. Éksp. Teor. Fiz. 77, 292 (2003) [JETP Lett. 77, 247 (2003)]; arXiv:condmat/0303227 v1.Google Scholar
  15. 15.
    B. A. Dubrovin and P. S. Novikov, Zh. Éksp. Teor. Fiz. 79, 1006 (1980) [Sov. Phys. JETP 52, 511 (1980)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. V. Iordanski
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations