JETP Letters

, 87:511 | Cite as

Rheological properties of a vesicle suspension

  • S. S. Vergeles
Condensed Matter

Abstract

The rheological properties of a vesicle suspension have been investigated in the limit of strong flows destroying the stationary form of vesicles. The dependence of the effective viscosity of the suspension on the velocity gradient and the properties of vesicles has been obtained for the case of the plane flow. In particular, it has been shown that the effective viscosity of the suspension can strongly depend on its initial state. The effect of thermal fluctuations on the rheological properties of the suspension has been analyzed.

PACS numbers

47.50.-d 47.57.E- 66.20.Cy 

References

  1. 1.
    A. Einstein, Ann. Physik. 34, 592 (1911).ADSGoogle Scholar
  2. 2.
    G. I. Taylor, Proc. Roy. Soc. A 138, 41 (1932).MATHCrossRefADSGoogle Scholar
  3. 3.
    U. Seifert, Eur. Phys. J. B 8, 405 (1999).CrossRefADSGoogle Scholar
  4. 4.
    Kantsler and V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005).Google Scholar
  5. 5.
    V. Kantsler and V. Steinberg, Phys. Rev. Lett. 96, 036001 (2006).Google Scholar
  6. 6.
    C. Misbah, Phys. Rev. Lett. 96, 028104 (2006).Google Scholar
  7. 7.
    P. M. Vlahovska and R. S. Gracia, Phys. Rev. E 75, 016313 (2007).Google Scholar
  8. 8.
    H. Noguchi and G. Gompper, Phys. Rev. Lett. 98, 128103 (2007).Google Scholar
  9. 9.
    V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, Phys. Rev. Lett. 100, 028103 (2008).Google Scholar
  10. 10.
    V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, New J. Phys. (in press); arXiv:0705.3543.Google Scholar
  11. 11.
    G. Danker and C. Misbah, Phys. Rev. Lett. 98, 088104 (2007).Google Scholar
  12. 12.
    W. Helfrich, Z. Naturforsch. B 103, 67 (1975).Google Scholar
  13. 13.
    E. I. Kats, V. V. Lebedev, and A. R. Muratov, JETP Lett. 63, 217 (1996).CrossRefADSGoogle Scholar
  14. 14.
    R. Dimova, B. Pouligny, and C. Dietrich, Biophys. J. 79, 340 (2000).CrossRefGoogle Scholar
  15. 15.
    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1965; Mir, Moscow, 1976).Google Scholar
  16. 16.
    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. S. Vergeles
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations