JETP Letters

, Volume 87, Issue 8, pp 447–451 | Cite as

Abrupt changes in the temperature dependence of the ESR linewidth of La1 − x Ca x MnO3 single crystals

  • I. V. Yatsyk
  • R. M. Eremina
  • M. M. Shakirzyanov
  • Ya. M. Mukovskii
  • H. -A. Krug von Nidda
  • A. Loidl
Condensed Matter

Abstract

The temperature dependence of the ESR linewidth in La1 − x Ca x MnO3 single crystals with various dopant concentrations (x = 0.18, 0.2, 0.22, 0.25, and 0.3) has been studied. An abrupt decrease in the ESR linewidth has been observed in the samples with a dopant concentration of x = 0.18 and 0.2 near the respective temperatures T OO′ ≈ 260 and 240 K of the orthorhombic to pseudocubic structural phase transition. The abrupt decrease in the ESR linewidth by approximately 180 Oe has been also observed in the whole temperature range when the concentration is increased from x = 0.2 to x = 0.22. The formula for the fourth moment of the ESR line has been derived including both crystal fields and isotropic exchange interactions and taking into account the difference between the exchange coupling of a spin to its nearest in-plane and out-of-plane neighbors. The formula has been used to estimate the parameter D of the crystalline field on Mn3+ ions.

PACS numbers

67.57.Lm 76.60.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].CrossRefGoogle Scholar
  2. 2.
    G. Biotteau, M. Hennion, F. Moussa, et al., Phys. Rev. B 64, 104421 (2001).Google Scholar
  3. 3.
    M. Pissas, I. Margiolaki, G. Papavassiliou, et al., Phys. Rev. B 72, 064425 (2005).Google Scholar
  4. 4.
    D. L. Huber, G. Alejandro, A. Caneiro, et al., Phys. Rev. B 60, 12155 (1999).Google Scholar
  5. 5.
    A. I. Shames, E. Rosenberg, G. Gorodetsky, et al., Phys. Rev. B 68, 174402 (2003).Google Scholar
  6. 6.
    A. Shengelaya, Guo-meng Zhao, H. Keller, et al., Phys. Rev. B 61, 5888 (2000).Google Scholar
  7. 7.
    A. I. Shames, E. Rozenberg, M. Auslender, et al., J. Magn. Magn. Mater. 910, 290 (2005).Google Scholar
  8. 8.
    A. Auslender, A. I. Shames, E. Rozenberg, et al., IEEE Trans. Magn. 43, 3049 (2007).CrossRefADSGoogle Scholar
  9. 9.
    V. A. Atsarkin, V. V. Demidov, F. Simon, et al., J. Magn. Magn. Mater. 258–259, 256 (2003).CrossRefGoogle Scholar
  10. 10.
    R. Laiho, E. Lahderanta, J. Salminen, et al., Phys. Rev. B 63, 094405 (2001).Google Scholar
  11. 11.
    D. A. Shulyatev, S. G. Karabashev, et al., J. Cryst. Growth 810, 237 (2002).Google Scholar
  12. 12.
    S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974; Nauka, Moscow, 1972).Google Scholar
  13. 13.
    J. Deisenhofer, B. I. Kochelaev, E. Shilova, et al., Phys. Rev. B 68, 214427 (2003).Google Scholar
  14. 14.
    J. Deisenhofer, M. V. Eremin, D. V. Zakharov, et al., Phys. Rev. B 65, 104440 (2002).Google Scholar
  15. 15.
    M. Hennion, F. Moussa, P. Lehouelleur, et al., Phys. Rev. Lett. 94, 057006 (2005).Google Scholar
  16. 16.
    Q. Huang, A. Santoro, J. W. Lynn, et al., Phys. Rev. B 55, 14987 (1996).Google Scholar
  17. 17.
    R. I. Zainullina, N. G. Bebenin, V. V. Ustinov, et al., Phys. Rev. B 76, 014408 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. V. Yatsyk
    • 1
  • R. M. Eremina
    • 1
  • M. M. Shakirzyanov
    • 1
  • Ya. M. Mukovskii
    • 2
  • H. -A. Krug von Nidda
    • 3
  • A. Loidl
    • 3
  1. 1.Zavoiskii Physicotechnical Institute, Kazan Scientific CenterRussian Academy of SciencesKazan 29Russia
  2. 2.Moscow Institute of Steel and AlloysMoscowRussia
  3. 3.Experimentalphysik V, Elektronische Korrelationen und MagnetismusUniversität AugsburgAugsburgGermany

Personalised recommendations