Advertisement

JETP Letters

, Volume 87, Issue 7, pp 390–394 | Cite as

Geometric phase via adiabatic manipulations of the environment

Condensed Matter

Abstract

It has been shown that geometric phases may be generated in a quantum system subject to noise by adiabatic manipulations of the fluctuating fields, e.g., by variation of the system-environment coupling. For a two-state quantum system, this phase is expressed in terms of the geometry of the path, traversed by the slowly varying direction and amplitude of the fluctuations. The origin of this phase and the possibilities of separating it from the known environment-induced modification of the Berry phase are discussed.

PACS numbers

03.65.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Berry, Proc. R. Soc. Lond. 392, 45 (1984).MATHADSMathSciNetGoogle Scholar
  2. 2.
    Geometric Phases in Physics, Ed. by A. Shapere and F. Wilczek (World Sci., Singapore, 1989).MATHGoogle Scholar
  3. 3.
    G. B. Malykin and S. A. Kharlamov, Usp. Fiz. Nauk 173, 985 (2003) [Phys. Usp. 46, 957 (2003)].CrossRefGoogle Scholar
  4. 4.
    P. J. Leek, J. M. Fink, A. Blais, et al., Science 318, 1889 (2007).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    M. Möttönen, J. J. Vartiainen, and J. P. Pekola, e-print arXiv:0710.5623 (2007).Google Scholar
  6. 6.
    R. S. Whitney, Yu. Makhlin, A. Shnirman, and Y. Gefen, Phys. Rev. Lett. 94, 070407 (2005).Google Scholar
  7. 7.
    R. S. Whitney and Y. Gefen, Phys. Rev. Lett. 90, 190402 (2003).Google Scholar
  8. 8.
    G. Falci, R. Fazio, G. M. Palma, et al., Nature 407, 355 (2000).CrossRefADSGoogle Scholar
  9. 9.
    Yu. Makhlin, G. Schön, and A. Shnirman, in New Directions in Mesoscopic Physics (Towards Nanoscience), Ed. by R. Fazio, V. F. Gantmakher, and Y. Imry (Springer, Berlin, 2003), pp. 197–224.Google Scholar
  10. 10.
    Our results, to be presented elsewhere, show that the situation in multilevel systems may be more complicated.Google Scholar
  11. 11.
    F. Bloch, Phys. Rev. 105, 1206 (1957).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).CrossRefGoogle Scholar
  13. 13.
    C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Theoretische Physik IIIRuhr-Universitat BochumBochumGermany
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyĭ, Moscow regionRussia

Personalised recommendations