Advertisement

JETP Letters

, Volume 87, Issue 4, pp 220–224 | Cite as

Non-fermi liquid criticality and superuniversality in the quantum hall regime

  • A. M. M. Pruisken
  • I. S. Burmistrov
Condensed Matter

Abstract

The results of a microscopic theory, based on the topological concept of a θ vacuum, which show that the Coulomb potential, unlike any finite-ranged interaction potential, renders the long-standing problem of the plateau transitions in the quantum Hall regime like a non-Fermi liquid are reported. These results, which are important for quantum-phase transitions in general and composite fermion ideas in particular, provide a novel understanding of the critical exponent values that have recently been (re-)taken from a series of state-of-the-art quantum Hall samples.

PACS numbers

71.10.Pm 72.10.-d 73.43.-f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wanli Li, G. A. Csa’thy, D. C., Tsui, et al., Phys. Rev. Lett. 94, 206807 (2005) and references therein.Google Scholar
  2. 2.
    H. P. Wei, D. C. Tsui, M. A. Palaanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).CrossRefADSGoogle Scholar
  3. 3.
    A. M. M. Pruisken, B. Škorić, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999).Google Scholar
  4. 4.
    R. T. F. van Schaijk, A. de Visser, S. M. Olsthoorn, et al., Phys. Rev. Lett. 84, 1567 (2000).CrossRefADSGoogle Scholar
  5. 5.
    A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).CrossRefADSGoogle Scholar
  6. 6.
    J. T. Chalker and P. D. Coddington, J. Phys. C 21, 2665 (1988); B. Mieck, Europhys. Lett. 13, 453 (1990); Y. Huo and R. N. Bhatt, Phys. Rev. Lett. 68, 1375 (1992); T. Ando, J. Phys. Soc. Japan 61, 415 (1992); D.-H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993).CrossRefADSGoogle Scholar
  7. 7.
    B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).CrossRefADSGoogle Scholar
  8. 8.
    A. M. M. Pruisken, M. A. Baranov, and B. Škorić, Phys. Rev. B 60, 16807 (1999).Google Scholar
  9. 9.
    M. A. Baranov, B. Škorić, and A. M. M. Pruisken, Phys. Rev. B 60, 16821 (1999); M. A. Baranov, I. S. Burmistrov, and A. M. M. Pruisken, Phys. Rev. B 66, 075317 (2002).Google Scholar
  10. 10.
    A. M. M. Pruisken and I. S. Burmistrov, Ann. of Phys. (N.Y.) 316, 285 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    A. M. M. Pruisken, M. A. Baranov, and M. Voropaev, cond-mat/0206011.Google Scholar
  12. 12.
    A. M. M. Pruisken and I. S. Burmistrov, Ann. of Phys. (N.Y.) 322, 1265 (2007).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. M. Finkelstein, Electron Liquid in Disordered Conductors (Harwood Academic, London, 1990).Google Scholar
  14. 14.
    C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984).CrossRefADSGoogle Scholar
  15. 15.
    A. M. M. Pruisken, M. A. Baranov, and I. S. Burmistrov, JETP Lett. 82, 150 (2005).CrossRefADSGoogle Scholar
  16. 16.
    E. Brezin, S. Hikami, and J. Zinn Justin, Nucl. Phys. B 165, 528 (1980).CrossRefADSGoogle Scholar
  17. 17.
    A. M. M. Pruisken, Phys. Rev. B 31, 416 (1985).CrossRefADSGoogle Scholar
  18. 18.
    D.-H. Lee and Z. Wang, Phys. Rev. Lett. 76, 4014 (1996).CrossRefADSGoogle Scholar
  19. 19.
    B. Huckestein, Phys. Rev. Lett. 72, 1080 (1994).CrossRefADSGoogle Scholar
  20. 20.
    A. M. M. Pruisken, D. T. N. de Lang, L. A. Ponomarenko, and A. de Visser, Solid State Commun. 137, 540 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Department of Theoretical PhysicsMoscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations