JETP Letters

, Volume 87, Issue 2, pp 98–102

Second harmonic generation in a strontium barium niobate crystal with a random domain structure

  • K. A. Kuznetsov
  • G. Kh. Kitaeva
  • A. V. Shevlyuga
  • L. I. Ivleva
  • T. R. Volk
Article

Abstract

The phenomenon of the second-harmonic (SH) generation in a strontium barium niobate (SBN) crystal in directions not obeying the conditions of phase matching for spatially homogeneous media has been studied. The appearance of the SH signal is interpreted as resulting from the quasi-phase-matching nonlinear wave interaction due to the random domain structure of the SBN crystal containing acicular ferroelectric microdomains. A theoretical model describing the SH generation in such two-dimensional, spatially inhomogeneous nonlinear optical structures is proposed. An analysis of the second-harmonic emission directivity patterns shows that the main contribution to the noncollinear SH generation in SBN is due to near-surface domains extending to a depth of up to several dozen microns.

PACS numbers

42.65.Ky 42.70.Mp 78.20.Bh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, et al., Nature 432, 374 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    X. Liu, Z. Wang, J. Wu, and N. Ming, Phys. Rev. A 58, 4956 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    C. Sibilia, F. Tropea, and M. Bertolotti, J. Mod. Opt. 45, 2255 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    G. Imeshev, M. A. Arbore, M. Fejer, et al., J. Opt. Soc. Am. B 17, 304 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    P. Loza-Alvarez, M. Ebrahimzadeh, V. Sibbett, et al., J. Opt. Soc. Am. B 18, 1212 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    H. Guo, S. H. Tang, Y. Qin, and Y. Y. Zhu, Phys. Rev. E 71, 066615 (2005).Google Scholar
  8. 8.
    X. Vidal and J. Martorell, Phys. Rev. Lett. 97, 013902 (2006).Google Scholar
  9. 9.
    G. Kh. Kitaeva, Phys. Rev. A 76, 043841 (2007).Google Scholar
  10. 10.
    E. Yu. Morozov and A. S. Chirkin, Kvant. Elektron. 34, 227 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. R. Tunyagi, M. Ulex, and K. Betzler, Phys. Rev. Lett. 90, 243901 (2003).Google Scholar
  12. 12.
    G. Fogarty, B. Steiner, M. Cronin-Golomb, et al., J. Opt. Soc. Am. B 13, 2636 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    M. Wesner, L. Wischmeier, E. Krätzig, et. al., OSA Trends Opt. Photonics 87, 22 (2003).Google Scholar
  14. 14.
    N. R. Ivanov, T. R. Volk, L. I. Ivleva, et al., Kristallografiya 47, 1065 (2002).Google Scholar
  15. 15.
    L. I. Ivleva, N. V. Bogodaev, N. M. Polozkov, et al., Opt. Mater. 4, 168 (1995).CrossRefGoogle Scholar
  16. 16.
    G. Kh. Kitaeva and A. N. Penin, Kvant. Elektron. 34, 597 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    D. N. Klyshko, Photons and Nonlinear Optics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  18. 18.
    T. Woike, T. Granzow, U. Dörfler, et al., Phys. Status Solidi (a) 186, R13 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • K. A. Kuznetsov
    • 1
  • G. Kh. Kitaeva
    • 1
  • A. V. Shevlyuga
    • 1
  • L. I. Ivleva
    • 2
  • T. R. Volk
    • 3
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations