JETP Letters

, Volume 86, Issue 10, pp 647–651 | Cite as

Dephasing in the semiclassical limit is system-dependent

  • C. Petitjean
  • P. Jacquod
  • R. S. Whitney
Condensed Matter

Abstract

Dephasing in open quantum chaotic systems has been investigated in the limit of large system sizes to the Fermi wavelength ratio, LF 〉 1. The weak localization correction gwl to the conductance for a quantum dot coupled to (i) an external closed dot and (ii) a dephasing voltage probe is calculated in the semiclassical approximation. In addition to the universal algebraic suppression gwl ∝ (1 + τDϕ)−1 with the dwell time τD through the cavity and the dephasing rate τϕ−1, we find an exponential suppression of weak localization by a factor of ∝ exp[−\(\tilde \tau \)ϕ], where \(\tilde \tau \) is the system-dependent parameter. In the dephasing probe model, \(\tilde \tau \) coincides with the Ehrenfest time, \(\tilde \tau \) ∝ ln[LF], for both perfectly and partially transparent dot-lead couplings. In contrast, when dephasing occurs due to the coupling to an external dot, \(\tilde \tau \) ∝ ln[L/ξ] depends on the correlation length ξ of the coupling potential instead of λF.

PACS numbers

03.65.Yz 05.45.Mt 73.23.-b 74.40.+k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Stone, in Physics of Nanostructures, Ed. by J. H. Davies and A. R. Long (Inst. of Physics and Physical Society, London, 1992).Google Scholar
  2. 2.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, New York, 1997).Google Scholar
  3. 3.
    E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed. (Springer, Berlin, 2003).Google Scholar
  4. 4.
    B. L. Altshuler, A. G. Aronov, and D. Khmelnitsky, J. Phys. C 15, 7367 (1982).CrossRefADSGoogle Scholar
  5. 5.
    M. Büttiker, Phys. Rev. B 33, 3020 (1986).CrossRefADSGoogle Scholar
  6. 6.
    H. U. Baranger and P. A. Mello, Waves Random Media 9, 105 (1999).MATHCrossRefADSGoogle Scholar
  7. 7.
    M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 60, R16311 (1999); G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 (2001); M. L. Polianski and P. W. Brouwer, J. Phys. A: Math. Gen. 36, 3215 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A. G. Huibers et al., Phys. Rev. Lett. 81, 200 (1998).CrossRefADSGoogle Scholar
  9. 9.
    A. E. Hansen et al., Phys. Rev. B 64, 045327 (2001); K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. Soc. Jpn. 71, 2094 (2002).Google Scholar
  10. 10.
    F. Pierre et al., Phys. Rev. B 68, 085413 (2003).Google Scholar
  11. 11.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).CrossRefADSGoogle Scholar
  12. 12.
    I. L. Aleiner and A. I. Larkin, Phys. Rev. B 54, 14423 (1996).CrossRefADSGoogle Scholar
  13. 13.
    J. Tworzydlo et al., Phys. Rev. Lett. 93, 186806 (2004).Google Scholar
  14. 14.
    W. G. van der Wiel et al., Rev. Mod. Phys. 75, 1 (2003).CrossRefGoogle Scholar
  15. 15.
    Ph. Jacquod and R. S. Whitney, Phys. Rev. B 73, 195115 (2006); see in particular Sect. 5.Google Scholar
  16. 17.
    K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 (2002); I. Adagideli, Phys. Rev. B 68, 233308 (2003); S. Heusler, S. Müller, P. Braun, and F. Haake, Phys. Rev. Lett. 96, 066804 (2006).Google Scholar
  17. 18.
    S. Rahav and P. W. Brouwer, Phys. Rev. Lett. 96, 196804 (2006).Google Scholar
  18. 21.
    R. S. Whitney, Phys. Rev. B 75, 235404 (2007).Google Scholar
  19. 22.
    Aleiner and Larkin [12] mention that they do not expect their result to hold when ξ is a classical scale.CrossRefADSGoogle Scholar
  20. 23.
    A. Altland, P. W. Brouwer, and C. Tian, Phys. Rev. Lett. 99, 036804 (2007); cond-mat/0605051v1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • C. Petitjean
    • 1
  • P. Jacquod
    • 2
  • R. S. Whitney
    • 3
  1. 1.Deepartement de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland
  2. 2.Physics DepartmentUniversity of ArizonaTucsonUSA
  3. 3.Institut Laue-LangevinGrenobleFrance

Personalised recommendations