JETP Letters

, Volume 86, Issue 10, pp 637–642 | Cite as

Nonlinear theory of mirror instability near its threshold

  • E. A. Kuznetsov
  • T. Passot
  • P. L. Sulem
Plasma, Gases


An asymptotic model based on a reductive perturbative expansion of the drift kinetic and Maxwell’s equations is used to demonstrate that, near the instability threshold, the nonlinear dynamics of mirror modes in a magnetized plasma with anisotropic ion temperatures involves a subcritical bifurcation, leading to the formation of small-scale structures with amplitudes comparable with the ambient magnetic field.

PACS numbers

52.25.Xz 52.35.Py 94.05.-a 94.30.Cj 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Lucek, M. W. Dunlop, T. S. Horbury, et al., Ann. Geophys. 19, 1421 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    K. Sperveslage, F. M. Neubauer, K. Baumgärtel, and N. F. Ness, Nonlinear Process. Geophys. 7, 191 (2000).ADSGoogle Scholar
  3. 3.
    J. Soucek, E. Lucek, and I. Danbouras, J. Geophys. Res. (submitted).Google Scholar
  4. 4.
    A. A. Vedenov and R. Z. Sagdeev, in Plasma Physics and Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Akad. Nauk SSSR, Moscow, 1957; Pergamon, New York, 1958), Vol. 3, p. 332.Google Scholar
  5. 5.
    O. A. Pokhotelov, R. Z. Sagdeev, M. A. Balikhin, and R. A. Treumann, J. Geophys. Res. 109, A09213 (2004).CrossRefGoogle Scholar
  6. 6.
    P. Hellinger, Phys. Plasmas 14, 082105 (2007).Google Scholar
  7. 7.
    S. P. Gary, J. Geophys. Res. 97(A6), 8519 (1992).CrossRefADSGoogle Scholar
  8. 8.
    P. Hellinger and P. Travnicek, Geophys. Res. Lett. 110, A04210 (2005).Google Scholar
  9. 9.
    A. Hasegawa, Phys. Fluids 12, 2642 (1969).CrossRefADSGoogle Scholar
  10. 10.
    A. N. Hall, J. Plasma Phys. 21, 431 (1979).CrossRefADSGoogle Scholar
  11. 11.
    G. Erdös and A. Balogh, J. Geophys. Res. 101(A1), 1 (1996).CrossRefADSGoogle Scholar
  12. 12.
    V. Génot, E. Budnik, C. Jacquey, et al., in AGU Fall Meeting Abstracts (2006), C1412+.Google Scholar
  13. 13.
    T. Passot, V. Ruban, and P. L. Sulem, Phys. Plasmas 13, 102310 (2006).Google Scholar
  14. 14.
    E. A. Kuznetsov, T. Passot, and P. L. Sulem, Phys. Rev. Lett. 8, 235003 (2007).Google Scholar
  15. 15.
    D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Vol. 1, p. 7.Google Scholar
  16. 16.
    R. M. Kulsrud, Basic Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Énergoatomizdat, Moscow, 1983; North-Holland, Amsterdam, 1984), p. 115.Google Scholar
  17. 17.
    V. D. Shapiro and V. I. Shevchenko, Sov. Phys. JETP 18, 1109 (1964).Google Scholar
  18. 18.
    M. G. Kivelson and D. S. Southwood, J. Geophys. Res. 101, 365 (1996).Google Scholar
  19. 19.
    F. G. E. Pantellini, J. Geophys. Res. 103, 4789 (1998).CrossRefADSGoogle Scholar
  20. 20.
    F. Califano, P. Hellinger, E. Kuznetsov, et al., J. Geophys. Res. (submitted).Google Scholar
  21. 21.
    E. A. Kuznetsov and S. L. Musher, Sov. Phys. JETP 64, 947 (1986).Google Scholar
  22. 22.
    S. K. Turitsyn, Phys. Rev. E 47, R13 (1993).CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    K. Baumgärtel, K. Sauer, and E. Dubinin, Geophys. Res. Lett. 30, 1761 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
    • 2
  • T. Passot
    • 3
  • P. L. Sulem
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.CNRSObservatoire de la Côte d’AzurNice Cedex 4France

Personalised recommendations