Advertisement

JETP Letters

, Volume 86, Issue 4, pp 244–248 | Cite as

Static and high-frequency hole transport in p-Si/SiGe heterostructures in the extreme quantum limit

  • I. L. Drichko
  • I. Yu. Smirnov
  • A. V. Suslov
  • Yu. M. Gal’perin
  • V. M. Vinokur
  • M. Myronov
  • O. A. Mironov
Article

Abstract

Complex high-frequency (HF), σAC = σ1iσ2, and static, σDC, conductivities, as well as current-voltage characteristics, have been measured in p-Si/SiGe heterostructures with a low hole density (p = 8.2 × 1010 cm−2) at temperatures T = 0.3–4.2 K in the ultraquantum limit, when the filling factor is v < 1. In order to determine the components of the HF conductivity, the acoustic contactless method in the “hybrid configuration” is used, when the surface acoustic wave propagates on the surface of the LiNbO3 piezoelectric and the heterostructure is pressed to the surface by a spring. The conductivities σ1 and σ2 are determined from the damping and velocity of the surface acoustic waves that are measured simultaneously with varying the magnetic field. The revealed HF conductivity features—σ1 ≫ |σ2|, the negative sign of σ2, the threshold behavior of the current-voltage characteristic, and the dependence I ∝ exp(-A/V 0.3) in the subthreshold region—indicate the formation of a pinned Wigner crystal (glass) in the ultraquantum limit (T = 0.3–0.8 K, B > 14 T).

PACS numbers

73.23.-b 73.43.-f 73.50.Rb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wigner, Phys. Rev. 46, 1002 (1934).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    V. M. Pudalov, in Physics of Quantum Solids of Electrons, Ed. by S.-T. Chui (International Press, Singapore, 1994), p. 124.Google Scholar
  3. 3.
    Yu. E. Lozovik and V. I. Yudson, Pis’ma Zh. Éksp. Teor. Fiz. 22, 26 (1975) [JETP Lett. 22, 11 (1975)].ADSGoogle Scholar
  4. 4.
    P. D. Ye, L. W. Engel, D. C. Tsui, et al., Phys. Rev. Lett. 89, 176802 (2002).Google Scholar
  5. 5.
    V. T. Dolgopolov, G. V. Kravchenko, and A. A. Shashkin, Phys. Rev. B 46, 13 303 (1992).Google Scholar
  6. 6.
    B. Pödör, Gy. Kovács, G. Reményi, et al., Inorg. Mater. 37, 439 (2001).CrossRefGoogle Scholar
  7. 7.
    I. L. Drichko, A. M. Diakonov, I. Yu. Smirnov, et al., Phys. Rev. B 62, 7470 (2000).CrossRefADSGoogle Scholar
  8. 8.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, et al., Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  9. 9.
    M. M. Fogler and D. A. Huse, Phys. Rev. B 62, 7553 (2000).CrossRefADSGoogle Scholar
  10. 10.
    B. G. A. Normand, P. B. Littlewood, and A. J. Millis, Phys. Rev. B 46, 3920 (1992).CrossRefADSGoogle Scholar
  11. 11.
    L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • I. L. Drichko
    • 1
  • I. Yu. Smirnov
    • 1
  • A. V. Suslov
    • 2
  • Yu. M. Gal’perin
    • 1
    • 3
    • 4
  • V. M. Vinokur
    • 4
  • M. Myronov
    • 5
  • O. A. Mironov
    • 6
    • 7
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National High Magnetic LaboratoryTallahasseeUSA
  3. 3.Department of Physics and Center for Advanced Materials & NanotechnologyUniversity of OsloOsloNorway
  4. 4.Argonne National LaboratoryArgonneUSA
  5. 5.Musashi Institute of TechnologyTokyoJapan
  6. 6.Venture CentreUniversity of Warwick Science ParkCoventryUK
  7. 7.International Laboratory of High Magnetic Fields and Low TemperatureWroclaw 47Poland

Personalised recommendations