Advertisement

JETP Letters

, Volume 86, Issue 3, pp 197–201 | Cite as

Equation of state and structural transition at high hydrostatic pressures in the BiFeO3 crystal

  • A. G. Gavriliuk
  • V. V. Struzhkin
  • I. S. Lyubutin
  • I. A. Troyan
Condensed Matter

Abstract

Change in the crystal structure of the BiFeO3 multiferroic at high pressures up to 70 GPa in a diamond anvil cell has been studied by the method of synchrotron x-ray diffraction at room temperature. The experiment has been carried out under hydrostatic conditions with helium as a pressure-transferring medium. An anomaly has been observed in the behavior of the structural parameters at pressures P c ≈ 40−50 GPa. This anomaly correlates with the effect of the magnetic collapse of iron moments revealed in this pressure range. It has been found that the bulk compression modulus is equal to B 0 = (75.5 ± 15.5) GPa in the interval 0 < P < P c and is almost quadrupled to a value of B = (292 ± 9) GPa in the interval P > P c. When the pressure decreases, the behavior of the structural parameters is completely reversible in correlation with the reversibility of the magnetic transition. The “diffuseness” of the structural transition in pressure is explained by thermal fluctuations between the high-and low-spin states of Fe3+ ions in the transition region.

PACS numbers

64.30.+t 64.60.-i 71.27.+a 75.50.-y 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 47, 8 (2004).CrossRefGoogle Scholar
  2. 2.
    G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).CrossRefGoogle Scholar
  3. 3.
    G. A. Smolenskii, V. Yudin, E. Sher, et al., Sov. Phys. JETP 16, 622 (1963).Google Scholar
  4. 4.
    Yu. N. Venevtsev, G. Zhdanov, and S. Solov’ev, Sov. Phys. Crystallogr. 4, 538 (1960).Google Scholar
  5. 5.
    P. Fischer, M. Polomskya, I. Sosnowska, et al., J. Phys. C 13, 1931 (1980).CrossRefADSGoogle Scholar
  6. 6.
    J. D. Bucci, B. K. Robertson, and W. J. James, J. Appl. Crystallogr. 5, 187 (1972).CrossRefGoogle Scholar
  7. 7.
    S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963).ADSGoogle Scholar
  8. 8.
    I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Zalesskii, JETP 95, 101 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Wang, J. Neaton, and H. Zheng, Science 299, 1719 (2003).CrossRefADSGoogle Scholar
  11. 11.
    Yu. F. Popov, Ferroelectrics 162, 135 (1994).Google Scholar
  12. 12.
    Yu. F. Popov, A. M. Kadomtseva, S. Krotov, et al., Low Temp. Phys. 27, 478 (2001).CrossRefADSGoogle Scholar
  13. 13.
    B. Ruette, Phys. Rev. B 69, 064114 (2004).Google Scholar
  14. 14.
    A. M. Kadomtseva, Physica B (Amsterdam) 211, 327 (1995).ADSGoogle Scholar
  15. 15.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 243 (2005) [JETP Lett. 82, 224 (2005)].Google Scholar
  16. 16.
    A. G. Gavriliuk, I. A. Troyan, R. Boehler, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 747 (2003) [JETP Lett. 77, 619 (2003)].Google Scholar
  17. 17.
    A. G. Gavriliuk, I. A. Troyan, R. Boehler, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 25 (2002) [JETP Lett. 75, 23 (2002)].Google Scholar
  18. 18.
    R. M. Hazen and L. W. Finder, Comparative Crystal Chemistry (Wiley, New York, 1982).Google Scholar
  19. 19.
    A. G. Gavriliuk, G. N. Stepanov, I. S. Lyubutin, et al., Zh. Éksp. Teor. Fiz. 117, 375 (2000) [JETP 90, 330 (2000)].Google Scholar
  20. 20.
    I. S. Lyubutin, A. G. Gavriliuk, V. V. Struzhkin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 84, 610 (2006) [JETP Lett. 84, 518 (2006)].Google Scholar
  21. 21.
    V. N. Zabluda, S. G. Ovchinnikov, A. M. Potseluĭko, and S. A. Kharlamova, Fiz. Tverd. Tela (St. Petersburg) 47, 474 (2005) [Phys. Solid State 47, 489 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. G. Gavriliuk
    • 1
    • 2
  • V. V. Struzhkin
    • 3
  • I. S. Lyubutin
    • 1
  • I. A. Troyan
    • 1
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Institute for High Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  3. 3.Geophysical LaboratoryCarnegie Institution of WashingtonWashington, DCUSA

Personalised recommendations