JETP Letters

, Volume 86, Issue 3, pp 157–163 | Cite as

Disappearing cosmological constant in f(R) gravity

Gravity, Astrophysics

Abstract

For higher-derivative f(R) gravity, where R is the Ricci scalar, a class of models is proposed, which produce viable cosmology different from the ACDM at recent times and satisfy cosmological, Solar System, and laboratory tests. These models have both flat and de Sitter spacetimes as particular solutions in the absence of matter. Thus, a cosmological constant is zero in a flat spacetime, but appears effectively in a curved one for sufficiently large R. A “smoking gun” for these models would be a small discrepancy in the values of the slope of the primordial perturbation power spectrum determined from galaxy surveys and CMB fluctuations. On the other hand, a new problem for dark energy models based on f(R) gravity is pointed out, which is connected with the possible overproduction of new massive scalar particles (scalarons) arising in this theory in the very early Universe.

PACS numbers

04.50.+h 95.36.+x 98.80.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006), astro-ph/0610026.MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000), astro-ph/9904398.ADSGoogle Scholar
  3. 3.
    V. Barger, Y. Gao, and D. Marfatia, Phys. Lett. B 648, 127 (2007), astro-ph/0611775; A. Gong and A. Wang, Phys. Rev. D 75, 0435520 (2007), astro-ph/0612196; U. Alam, V. Sahni, and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0702, 011 (2007), astro-ph/0612381; S. Nesseris and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0702, 025 (2007), astro-ph/0612653; G.-B. Zhao, J.-Q. Xia, H. Li, et al., astro-ph/0612728; K. Ichikawa and T. Takahashi, J. Cosmol. Astropart. Phys. 0702, 001 (2007), astro-ph/0612739; P. Serra, A. Heavens, and A. Melchiorri, astro-ph/0701338; T. M. Davis, E. Mortsell, J. Sollerman, et al., astro-ph/0701510; E. L. Wright, astro-ph/0701584; Y. Wang and P. Mukherjee, astro-ph/0703780.CrossRefADSGoogle Scholar
  4. 4.
    S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007), hep-th/0601008; E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006), hep-th/0603057; J.-P. Uzan, astro-ph/0605313; S. Bludman, astro-ph/0702085.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).CrossRefADSGoogle Scholar
  6. 6.
    B. Whitt, Phys. Lett. B 145, 176 (1984); J. D. Barrow and S. Cotsakis, Phys. Lett. B 214, 515 (1988); K. I. Maeda, Phys. Rev. D 39, 3159 (1989); S. Gottlöber, H.-J. Schmidt, and A. A. Starobinsky, Class. Quantum Grav. 7, 893 (1990).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Nojiri and S. Odintsov, Phys. Lett. B 571, 1 (2003), hep-th/0307071.MATHCrossRefADSGoogle Scholar
  8. 8.
    T. V. Ruzmaikina and A. A. Ruzmaikin, Zh. Éksp. Teor. Fiz. 57, 680 (1969) [Sov. Phys. JETP 30, 372 (1970)]; B. N. Breizman, V. Ts. Gurovich, and V. P. Sokolov, Zh. Éksp. Teor. Fiz. 59, 288 (1970) [Sov. Phys. JETP 32, 155 (1971)].ADSGoogle Scholar
  9. 9.
    A. A. Starobinsky, in Proceedings of the 2nd Seminar on Quantum Gravity, Moscow, 1981 (INR Press, Moscow, 1982), p. 58; in Quantum Gravity, Ed. by M. A. Markov and P. C. West (Plenum, New York, 1984), p. 103; A. Vilenkin, Phys. Rev. D 32, 2511 (1985); M. B. Mijic, M. S. Morris, and W.-M. Suen, Phys. Rev. D 34, 2934 (1986).Google Scholar
  10. 10.
    V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Éksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].ADSGoogle Scholar
  11. 11.
    A. A. Starobinsky, Pis’ma Astron. Zh. 9, 579 (1983) [Sov. Astron. Lett. 9, 302 (1983)].ADSGoogle Scholar
  12. 12.
    L. A. Kofman, V. F. Mukhanov, and D. Yu. Pogosyan, Zh. Éksp. Teor. Fiz. 93, 769 (1987) [Sov. Phys. JETP 66, 433 (1987)].ADSMathSciNetGoogle Scholar
  13. 13.
    J.-C. Hwang and H. Noh, Phys. Lett. B 506, 13 (2001), astro-ph/0102423.CrossRefADSGoogle Scholar
  14. 14.
    T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, astro-ph/0612569.Google Scholar
  15. 15.
    M. Tegmark, D. Eisenstein, M. Strauss, et al., Phys. Rev. D 74, 123507 (2006), astro-ph/0608632.Google Scholar
  16. 16.
    S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002), gr-qc/0201033.MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. Capozziello, S. Carloni, and A. Troisi, astro-ph/0303041; S. M. Carroll, V. Duvvuri, M. Trodden, and M. Turner, Phys. Rev. D 70, 043528 (2004), astro-ph/0306438; S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003), hep-th/0307288.Google Scholar
  18. 18.
    L. Amendola, D. Polarski, and S. Tsujikawa, Phys. Rev. Lett. 98, 131302 (2007), astro-ph/0603703; L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa, Phys. Rev. D 75, 083504 (2007), gr-qc/0612180.Google Scholar
  19. 19.
    G. Dvali, S. Hoffmann, and J. Khoury, hep-th/0703027.Google Scholar
  20. 20.
    B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, Phys. Rev. Lett. 85, 2236 (2000), gr-qc/0001066.CrossRefADSGoogle Scholar
  21. 21.
    R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0609, 016 (2006), astro-ph/0606287.Google Scholar
  22. 22.
    P. Teissandier and Ph. Tourrenc, J. Math. Phys. 24, 2793 (1983); D. Wands, Class. Quantum Grav. 11, 269 (1994), gr-qc/9307034; T. Chiba, Phys. Lett. B 575, 1 (2003), astro-ph/0307338.CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    T. Chiba, T. L. Smith, and A. L. Erickcek, astro-ph/0611867; V. Faraoni, gr-qc/0703044.Google Scholar
  24. 24.
    H. Nariai, Prog. Theor. Phys. 49, 165 (1973).CrossRefADSGoogle Scholar
  25. 25.
    V. Ts. Gurovich and A. A. Starobinsky, Zh. Éksp. Teor. Fiz. 77, 1683 (1979) [Sov. Phys. JETP 50, 844 (1979)].ADSGoogle Scholar
  26. 26.
    A. A. Starobinsky, Pis’ma Astron. Zh. 7, 67 (1981) [Sov. Astron. Lett. 7, 36 (1981)].ADSGoogle Scholar
  27. 27.
    V. Faraoni, Phys. Rev. D 72, 061501 (2005), gr-qc/0509008; V. Faraoni and S. Nadeau, Phys. Rev. D 72, 124005 (2005), gr-qc/0511094.Google Scholar
  28. 28.
    A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003), astro-ph/0307285.MATHCrossRefADSGoogle Scholar
  29. 29.
    L. Amendola and S. Tsujikawa, arXiv:0705.0396 [astro-ph].Google Scholar
  30. 30.
    J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004), astro-ph/0309300; Phys. Rev. D 69, 044026 (2004), astro-ph/0309411.Google Scholar
  31. 31.
    D. F. Mota and J. D. Barrow, Phys. Lett. B 581, 141 (2004), astro-ph/0306047; Mon. Not. R. Astron. Soc. 349, 291, astro-ph/0309273.CrossRefADSGoogle Scholar
  32. 32.
    D. J. Kapner, T. S. Cook, E. G. Adelberger, et al., Phys. Rev. Lett. 98, 021101 (2007), hep-ph/0611184.Google Scholar
  33. 33.
    Y.-S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75, 044004 (2007), astro-ph/0610532; B. Li and J. D. Barrow, Phys. Rev. D 75, 084010 (2007), astro-ph/0701111.Google Scholar
  34. 34.
    W. Hu and I. Sawicki, arXiv:0705.1158 [astro-ph].Google Scholar
  35. 35.
    S. A. Appleby and R. A. Battye, arXiv:0705.3199 [astro-ph].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations