Advertisement

JETP Letters

, Volume 86, Issue 1, pp 1–5 | Cite as

Topological susceptibility in the Yang-Mills theory in the vacuum correlator method

  • M. N. Chernodub
  • I. E. Kozlov
Fields, Particles, and Nuclei

Abstract

The topological susceptibility of the Yang-Mills vacuum has been calculated using the field correlator method. The estimate obtained for the SU(3) gauge group, χ1/4 = 196(7) MeV, is in a very good agreement with the results of recent numerical simulations of the Yang-Mills theory on the lattice.

PACS numbers

12.38.-t 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Nucl. Phys. B 156, 269 (1979); G. Veneziano, Nucl. Phys. B 159, 213 (1979).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    P. Di Vecchia, K. Fabricius, G. C. Rossi, and G. Veneziano, Nucl. Phys. B 192, 392 (1981); M. Campostrini, A. Di Giacomo, H. Panagopoulos, and E. Vicari, Nucl. Phys. B 329, 683 (1990); A. Ali Khan, S. Aoki, R. Burkhalter, et al. (CP-PACS Collab.), Phys. Rev. D 64, 114501 (2001); A. Hart and M. Teper, Phys. Lett. B 523, 280 (2001); C. Bernard, T. DeGrand, C. DeTar, et al., Phys. Rev. D 68, 114501 (2003).CrossRefADSGoogle Scholar
  3. 3.
    S. Dürr, Z. Fodor, C. Hoelbling, and T. Kurth, hep-lat/0612021.Google Scholar
  4. 4.
    H. G. Dosch, Phys. Lett. B 190, 177 (1987); H. G. Dosch and Yu. A. Simonov, Phys. Lett. B 205, 339 (1988); Yu. A. Simonov, Nucl. Phys. B 307, 512 (1988).CrossRefADSGoogle Scholar
  5. 5.
    A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Yu. A. Simonov, Phys. Rep. 372, 319 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    D. S. Kuzmenko, V. I. Shevchenko, and Yu. A. Simonov, Usp. Fiz. Nauk 174, 3 (2004) [Phys. Usp. 47, 1 (2004)]; D. S. Kuzmenko, V. I. Shevchenko, and Yu. A. Simonov, hep-ph/0310190; Yu. A. Simonov, Phys. Usp. 39, 313 (1996).CrossRefGoogle Scholar
  7. 7.
    A. Di Giacomo, E. Meggiolaro, and H. Panagopoulos, Nucl. Phys. B 483, 371 (1997).CrossRefADSGoogle Scholar
  8. 8.
    M. D’Elia, A. Di Giacomo, and E. Meggiolaro, Phys. Lett. B 408, 315 (1997).CrossRefADSGoogle Scholar
  9. 9.
    E.-M. Ilgenfritz and S. Thurner, Nucl. Phys. (Proc. Suppl.) 83, 488 (2000); hep-lat/9905012.ADSGoogle Scholar
  10. 10.
    A. Di Giacomo and E. Meggiolaro, Phys. Lett. B 537, 173 (2002).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    V. Shevchenko and Yu. Simonov, Phys. Rev. Lett. 85, 1811 (2000).CrossRefADSGoogle Scholar
  12. 12.
    A. B. Kaidalov and Yu. A. Simonov, Phys. Lett. B 477, 163 (2000); Yad. Fiz. 63, 1507 (2000) [Phys. At. Nucl. 63, 1428 (2000)].CrossRefADSGoogle Scholar
  13. 13.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973); Commun. Math. Phys. 42, 281 (1975); E. Seller and I. O. Stamatescu, Preprint MPI-PAE/PTh 10/87 (1987) (unpublished); E. Seiler, Phys. Lett. B 525, 355 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    E. Meggiolaro, Phys. Lett. B 451, 414 (1999).CrossRefADSGoogle Scholar
  15. 15.
    M. Eidemüller and M. Jamin, Phys. Lett. B 416, 415 (1998).CrossRefADSGoogle Scholar
  16. 16.
    M. C. Chu, J. M. Grandy, S. Huang, and J. W. Negele, Phys. Rev. D 49, 6039 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. N. Chernodub
    • 1
  • I. E. Kozlov
    • 1
    • 2
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations