JETP Letters

, Volume 85, Issue 8, pp 353–357 | Cite as

Spin-charge separation and the Pauli electron

  • M. N. Chernodub
  • A. J. Niemi
Fields, Particles, and Nuclei
  • 37 Downloads

Abstract

The separation between the spin and the charge converts the quantum mechanical Pauli Hamiltonian into the Hamiltonian of the non-Abelian Georgi-Glashow model, which is notorious for its magnetic monopoles and confinement. The independent spin and charge fluctuations both lead to the Faddeev model, suggesting the existence of a deep duality structure and indicating that the fundamental carriers of the spin and charge are knotted solitons.

PACS numbers

03.65.Vf 03.75.Lm 05.30.Pr 47.37.+q 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev and L. A. Takhtajan, Phys. Lett. A 85, 375 (1981).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).CrossRefADSGoogle Scholar
  3. 3.
    P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).CrossRefADSGoogle Scholar
  4. 4.
    F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Sci., Singapore, 1990).Google Scholar
  5. 5.
    S. A. Wolf et al., Science 294, 1488 (2001); P. Sharma, Science 307, 531 (2005).CrossRefADSGoogle Scholar
  6. 6.
    L. D. Faddeev and A. J. Niemi, Phys. Lett. B 525, 195 (2002); hep-th/0608111.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    G.’ t Hooft, Nucl. Phys. B 79, 276 (1974); A. M. Polyakov, JETP Lett. 20, 194 (1974).CrossRefADSGoogle Scholar
  8. 8.
    P. Orland, Nucl. Phys. B 428, 221 (1994); E. T. Akhmedov, M. N. Chernodub, M. I. Polikarpov, and M. A. Zubkov, Phys. Rev. D 53, 2087 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    L. D. Faddeev, in Relativity, Quanta, and Cosmology, Ed. by M. Pantaleo and F. De Finis (Johnson Reprint Co., New York, 1979), Vol. 1.Google Scholar
  10. 10.
    L. D. Faddeev and A. J. Niemi, Nature 387, 58 (1997); Phys. Rev. Lett. 85, 3416 (2000); E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev. B 65, 100512(R) (2002).CrossRefADSGoogle Scholar
  11. 11.
    C. Montonen and D. I. Olive, Phys. Phys. Lett. B 72, 117 (1977).CrossRefADSGoogle Scholar
  12. 12.
    M. Vettorazzo and P. de Forcrand, Phys. Lett. B 604, 82 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. J. Niemi, Phys. Rev. Lett. 94, 124502 (2005).Google Scholar
  14. 14.
    E. Babaev, Phys. Rev. Lett. 89, 067001 (2002); A. J. Niemi, J. High Energy Phys. 0408, 035 (2004).Google Scholar
  15. 15.
    E. Babaev, A. Sudbo, and N. W. Ashcroft, Nature 431, 666 (2004).CrossRefADSGoogle Scholar
  16. 16.
    J. Ambjorn and J. Greensite, J. High Energy Phys. 9805, 004 (1998); J. M. Cornwall, Phys. Rev. D 59, 125015 (1999).CrossRefADSGoogle Scholar
  17. 17.
    J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).CrossRefADSGoogle Scholar
  18. 18.
    M. N. Chernodub, R. Feldmann, E.-M. Ilgenfritz, and A. Schiller, Phys. Lett. B 605, 161 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. N. Chernodub
    • 1
    • 2
  • A. J. Niemi
    • 3
    • 4
    • 5
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Department of Theoretical PhysicsUppsala UniversityUppsalaSweden
  3. 3.Institute for Theoretical PhysicsKanazawa UniversityKanazawaJapan
  4. 4.Laboratoire de Mathematiques et Physique Theorique, CNRS UMR 6083Universite de ToursToursFrance
  5. 5.Chern Institute of MathematicsNankai UniversityTianjinPeoples Republic of China

Personalised recommendations