Advertisement

JETP Letters

, Volume 85, Issue 6, pp 271–276 | Cite as

Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses

  • M. B. Agranat
  • N. E. Andreev
  • S. I. Ashitkov
  • M. E. Veĭsman
  • P. R. Levashov
  • A. V. Ovchinnikov
  • D. S. Sitnikov
  • V. E. Fortov
  • K. V. Khishchenko
Plasma, Gases

Abstract

Experimental data on the amplitude and phase of the complex reflection coefficient of a laser pulse from a non-ideal solid-density plasma, which is produced on the surface of a metallic target by intense femtosecond laser radiation, have been obtained using femtosecond interference microscopy. A theoretical model developed for the interaction of intense femtosecond laser pulses with solid targets on the basis of the two-temperature equation of state for an irradiated substance allows the description of the dynamics of the formation and scattering of the plasma. Comparison of the experimental data with the simulation results provides new information on the transport coefficients and absorption capacity of the nonideal plasma.

PACS numbers

52.25.Os 52.38.-r 52.50.-b 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Rundquist, J.-S. Lee, and M. C. Downer, Phys. Rev. Lett. 82, 4010 (1999).CrossRefADSGoogle Scholar
  2. 2.
    V. D. Urlin and B. P. Yakutov, Kvantovaya Élektron. (Moscow) 30, 889 (2000).CrossRefGoogle Scholar
  3. 3.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, Phys. Rev. E 62, 1202 (2000).CrossRefADSGoogle Scholar
  4. 4.
    J. P. Colombier, P. Combis, F. Bonneau, et al., Phys. Rev. B 71, 165406 (2005).Google Scholar
  5. 5.
    V. A. Isakov, A. P. Kanavin, and S. A. Uryupin, Kvantovaya Élektron. (Moscow) 36, 928 (2006).CrossRefGoogle Scholar
  6. 6.
    M. B. Agranat, S. I. Ashitkov, A. A. Ivanov, et al., Kvantovaya Élektron. (Moscow) 34, 506 (2004).CrossRefGoogle Scholar
  7. 7.
    M. B. Agranat, N. E. Andreev, S. I. Ashitkov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 83, 80 (2006) [JETP Lett. 83, 72 (2006)].Google Scholar
  8. 8.
    M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).CrossRefADSGoogle Scholar
  10. 10.
    N. E. Andreev, M. E. Veĭsman, V. P. Efremov, and V. E. Fortov, Teplofiz. Vys. Temp. 41, 679 (2003) [High Temp. 41, 594 (2003)].Google Scholar
  11. 11.
    M. Veysman, B. Cros, N. E. Andreev, and G. Maynard, Phys. Plasmas 13, 053114 (2006).Google Scholar
  12. 12.
    L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).zbMATHCrossRefADSGoogle Scholar
  13. 13.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).Google Scholar
  14. 14.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-like Media (Atomizdat, Moscow, 1961) [in Russian].Google Scholar
  15. 15.
    I. T. Yakubov, Usp. Fiz. Nauk 163(5), 35 (1993) [Phys. Usp. 36, 365 (1993)].CrossRefGoogle Scholar
  16. 16.
    D. Semkat, R. Redmer, and Th. Bornath, Phys. Rev. E 73, 066406 (2006).Google Scholar
  17. 17.
    D. Fisher, M. Fraenkel, Z. Henis, et al., Phys. Rev. E 65, 016409 (2001).Google Scholar
  18. 18.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  19. 19.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976; Mir, Moscow, 1979), Vol. 1.Google Scholar
  20. 20.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).Google Scholar
  21. 21.
    K. V. Khishchenko, Pis’ma Zh. Tekh. Fiz. 30(19), 65 (2004) [Tech. Phys. Lett. 30, 829 (2004)].Google Scholar
  22. 22.
    A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (Inst. Khim. Fiz. Ross. Akad. Nauk, Chernogolovika, 1992) [in Russian].Google Scholar
  23. 23.
    L. V. Al’tshuler, A. V. Bushman, M. V. Zhernokletov, et al., Zh. Éksp. Teor. Fiz. 78, 741 (1980) [Sov. Phys. JETP 51, 373 (1980)].Google Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 4th ed. (Nauka, Moscow, 1995; Butter worth, London, 1999), Part 1.Google Scholar
  25. 25.
    M. M. Basko, Teplofiz. Vys. Temp. 23, 483 (1985).Google Scholar
  26. 26.
    M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Physics of Extreme States of Matter–2007 (Inst. Probl. Khim. Fiz. Ross. Akad. Nauk, Chernogolovka, 2007), p. 16 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. B. Agranat
    • 1
  • N. E. Andreev
    • 1
  • S. I. Ashitkov
    • 1
  • M. E. Veĭsman
    • 1
  • P. R. Levashov
    • 1
  • A. V. Ovchinnikov
    • 1
  • D. S. Sitnikov
    • 1
  • V. E. Fortov
    • 1
  • K. V. Khishchenko
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations