Advertisement

JETP Letters

, Volume 85, Issue 5, pp 236–241 | Cite as

Strong space plasma magnetic barriers and Alfvénic collapse

  • E. A. Kuznetsov
  • S. P. Savin
  • E. Amata
  • M. Dunlop
  • Y. Khotyaintsev
  • L. M. Zelenyi
  • E. V. Panov
  • J. Büchner
  • S. A. Romanov
  • J. Blecki
  • J. L. Rauch
  • B. Nikutowski
Plasma, Gases

Abstract

High-magnitude magnetic barriers in space and solar plasma are proposed to be attributed to the pile up of magnetic field lines and their Alfvénic collapse for MHD flows. The analysis of experimental data from both the Interball and Cluster spacecrafts shows that high-magnitude magnetic structures found in the Earth magnetosheath and near the magnetopause are supported by a nearly thermal transverse plasma flow, with the minimum barrier width being on the order of the ion gyroradius. The collapse termination at such scales can be explained by the balance between the pile up of magnetic field lines and backward finite-gyroradius diffusion. Comparison between the theoretical, modeling, and experimental data shows that the Alfvénic collapse is, in general, a promising mechanism for magnetic field generation and plasma separation.

PACS numbers

52.30.-q 52.40.Hf 52.40.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Haerendel, J. Atmos. Terr. Phys. 40, 343 (1978).CrossRefADSGoogle Scholar
  2. 2.
    S. P. Savin, L. M. Zelenyĭ, S. A. Romanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 620 (2001) [JETP Lett. 74, 547 (2001)].Google Scholar
  3. 3.
    A. Title, in Plasmas in the Laboratory and in the Universe: New Insights and New Challenges, Ed. by G. Bertin, D. Farina, and R. Pozzoli (AIP, Melvill, N.Y., 2004), AIP Conf. Proc., Vol. 703, p. 163.CrossRefGoogle Scholar
  4. 4.
    E. A. Kuznetsov, T. Passot, and P. L. Sulem, Phys. Plasmas 11, 1410 (2004).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E. A. Kuznetsov and V. P. Ruban, Zh. Éksp. Teor. Fiz. 118, 893 (2000) [JETP 91, 775 (2000)].Google Scholar
  6. 6.
    V. A. Zheligovsky, E. A. Kuznetsov, and O. M. Podvigina, Pis’ma Zh. Éksp. Teor. Fiz. 74, 402 (2001) [JETP Lett. 74, 367 (2001)].Google Scholar
  7. 7.
    E. A. Kuznetsov, J. Nonlinear Math. Phys. 13, 64 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    C. P. Escoubet, C. T. Russel, and R. Schmidt, Space Sci. Rev. 79, 1 (1997).CrossRefADSGoogle Scholar
  9. 9.
    S. P. Savin, L. M. Zelenyi, E. Amata, et al., Pis’ma Zh. Éksp. Teor. Fiz. 79, 452 (2004) [JETP Lett. 79, 368 (2004)].Google Scholar
  10. 10.
    S. Savin, E. Amata, M. Andre, et al., Nonlinear Process. Geophys. 11, 377 (2006).ADSGoogle Scholar
  11. 11.
    G. Bugnon, R. Goswami, T. Passot, and P. L. Sulem, Adv. Space Res. 38, 93 (2006).CrossRefADSGoogle Scholar
  12. 12.
    T. Asikainen and K. Mursula, Ann. Geophys. 23, 2217 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
    • 2
  • S. P. Savin
    • 2
  • E. Amata
    • 3
  • M. Dunlop
    • 4
  • Y. Khotyaintsev
    • 5
  • L. M. Zelenyi
    • 2
  • E. V. Panov
    • 2
    • 6
  • J. Büchner
    • 6
  • S. A. Romanov
    • 2
  • J. Blecki
    • 7
  • J. L. Rauch
    • 8
  • B. Nikutowski
    • 6
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Istituto di Fisica dello Spazio InterplanetarioINAFRomaItaly
  4. 4.Space Science and Technology DepartmentRutherford Appleton LaboratoryChiltonUK
  5. 5.Swedish Institute of Space PhysicsUppsalaSweden
  6. 6.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  7. 7.Space Research CenterPolish Academy of SciencesWarsawPoland
  8. 8.Laboratoire de Physique et Chimie, de l’EnvironnementCNRSOrleansFrance

Personalised recommendations