JETP Letters

, Volume 85, Issue 3, pp 136–141 | Cite as

Collinear ternary cluster decay of hyperdeformed 60Zn at high angular momentum

  • V. I. Zherebchevsky
  • W. von Oertzen
  • D. V. Kamanin
Fields, Particles, and Nuclei


Binary and ternary cluster decay of 60Zn compound nuclei at high angular momentum, formed in the 36Ar + 24Mg reaction at E lab(36Ar) = 195 MeV, has been measured in a unique kinematic coincidence setup consisting of two large area position sensitive (x, y) gas detector telescopes with Bragg-ionization chambers (BRS). The BRS provides the opportunity to measure the reaction angles in-and out-of-plane, and through Bragg-curve spectroscopy to achieve a complete identification of the nuclear charge for different final channels. We observed very narrow out-of-plane angular correlations for two heavy fragments emitted either in purely binary events or in events with a missing mass consisting of 2 and 3α particles. These narrow correlations are interpreted as ternary fission decay from compound nuclei at high angular momenta through an elongated (hyperdeformed) shape with a very large moment of inertia. In these stretched configurations, the lighter mass in the neck region remains at rest or with very low momentum in the center of mass.

PACS numbers

25.60.Dz 25.70.Gh 27.50.+e 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. Wiebecke and M. Zhukov, Nucl. Phys. A 351, 321 (1981).CrossRefADSGoogle Scholar
  2. 2.
    G. Royer and F. Haddad, J. Phys. G 21, 339 (1995).CrossRefADSGoogle Scholar
  3. 3.
    G. Royer, J. Phys. G 21, 249 (1995); G. Royer, F. Haddad, and J. Mignen, J. Phys. G 18, 2015 (1992).CrossRefADSGoogle Scholar
  4. 4.
    S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. Phys. (N.Y.) 82, 557 (1974).CrossRefADSGoogle Scholar
  5. 5.
    J. Zhang, A. C. Merchant, and W. D. M. Rae, Phys. Rev. C 49, 562 (1994); W. D. M. Rae, in Proceedings of 5th International Conference on Clustering Aspects in Nuclear and Subnuclear Systems, Kyoto, 1988 [Prog. Theor. Phys., 80 (1989)].CrossRefADSGoogle Scholar
  6. 6.
    G. Leander and S. E. Larsson, Nucl. Phys. A 239, 93 (1975).CrossRefADSGoogle Scholar
  7. 7.
    S. Aberg, H. Flocard, and W. Nazarewicz, Annu. Rev. Nucl. Sci. 40, 439 (1990).CrossRefADSGoogle Scholar
  8. 8.
    S. Aberg and L. O. Joensson, Z. Phys. A 349, 205 (1994).CrossRefGoogle Scholar
  9. 9.
    I. Ragnarsson, S. Aberg, and R. K. Sheline, Phys. Scr. 24, 215 (1981); I. Ragnarsson, S. G. Nilsson, and R. K. Sheline, Phys. Rep. 45, 1 (1978).CrossRefADSGoogle Scholar
  10. 10.
    C. Beck and A. Szanto de Toledo, Phys. Rev. C 53, 1989 (1996).CrossRefADSGoogle Scholar
  11. 11.
    B. Gebauer et al., in Proceedings of International Conference on the Future of Nuclear Spectroscopy, Ed. by W. Gelletly et al. (Crete, Greece, 1993), p. 168.Google Scholar
  12. 12.
    B. Gebauer et al., Achievements with the Euroball Spectrometer, Scientific and Technical Activity Report, Ed. by W. Korten and S. Lunardi (2003), p. 135.Google Scholar
  13. 13.
    S. J. Sanders, A. Szanto de Toledo, and C. Beck, Phys. Rep. 311, 487 (1999), and references therein.CrossRefADSGoogle Scholar
  14. 14.
    Sl. Cavallaro, E. De Filippo, G. Lanzano, et al., Phys. Rev. C 57, 731 (1998), and references therein.CrossRefADSGoogle Scholar
  15. 15.
    V. I. Zherebchevsky, W. von Oertzen, et al., Phys. Lett. B 646, 12 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. I. Zherebchevsky
    • 1
    • 2
    • 3
  • W. von Oertzen
    • 2
    • 3
  • D. V. Kamanin
    • 4
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Hahn-Meitner-Institut GmbHBerlinGermany
  3. 3.Fachbereich PhysikFreie UniversitätBerlinGermany
  4. 4.Flerov Laboratory for Nuclear ReactionsJoint Institute for Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations