JETP Letters

, Volume 85, Issue 1, pp 72–76 | Cite as

Local correlations of different eigenfunctions in a disordered wire

  • M. A. Skvortsov
  • P. M. Ostrovsky
Condensed Matter

Abstract

The correlation of the local density of states 〈ρɛ(r1ɛ + ω(r2)〉 in quasi-one-dimensional disordered wires in a magnetic field is calculated under the assumption that |r1r2| is much smaller than the localization length. This amounts to finding the zero mode of the transfer-matrix Hamiltonian for the supersymmetric σ model, which is done exactly by mapping to the three-dimensional Coulomb problem. Both the regimes of level repulsion and level attraction are obtained, depending on |r1r2|. We demonstrate that the correlations of different eigenfunctions in the quasi-one-dimensional and strictly one-dimensional cases are dissimilar.

PACS numbers

73.20.Fz 73.21.Hb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).CrossRefADSGoogle Scholar
  2. 2.
    M. E. Gertsenshtein and V. B. Vasil’ev, Teor. Veroyatn. Primen. 4, 424 (1959) [Theor. Probab. Appl. 4, 391 (1959)]; Teor. Veroyatn. Primen. 5, 3(E) (1959) [Theor. Probab. Appl. 5, 340(E) (1959)].Google Scholar
  3. 3.
    D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).CrossRefADSGoogle Scholar
  4. 4.
    K. B. Efetov, Adv. Phys. 32, 53 (1983).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    S. Iida, H. A. Weidenmüller, and J. A. Zuk, Ann. Phys. (N.Y.) 200, 219 (1990).CrossRefADSGoogle Scholar
  6. 6.
    Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. Lett. 67, 2405 (1991).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, Lect. Notes Phys. 93, 334 (1979).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    F. M. Izrailev, Phys. Rep. 196, 299 (1990).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982); D. R. Grempel, R. E. Prange, and S. Fishman, Phys. Rev. A 29, 1639 (1984).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    A. Altland and M. R. Zirnbauer, Phys. Rev. Lett. 77, 4536 (1996).CrossRefADSGoogle Scholar
  11. 11.
    M. A. Skvortsov, D. M. Basko, and V. E. Kravtsov, Pis’ma Zh. Éksp. Teor. Fiz. 80, 60 (2004) [JETP Lett. 80, 54 (2004)].Google Scholar
  12. 12.
    V. L. Berezinsky, Zh. Éksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. JETP 38, 620 (1974)].Google Scholar
  13. 13.
    V. L. Berezinsky and L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 77, 2498 (1979) [Sov. Phys. JETP 50, 1209 (1979)].Google Scholar
  14. 14.
    N. F. Mott, Philos. Mag. 17, 1259 (1968).CrossRefADSGoogle Scholar
  15. 15.
    L. P. Gor’kov, O. N. Dorokhov, and F. V. Prigara, Zh. Éksp. Teor. Fiz. 84, 1440 (1983) [Sov. Phys. JETP 57, 838 (1983)].Google Scholar
  16. 16.
    U. Sivan and Y. Imry, Phys. Rev. B 35, 6074 (1987).CrossRefADSGoogle Scholar
  17. 17.
    O. N. Dorokhov, Pis’ma Zh. Éksp. Teor. Fiz. 36, 259 (1982) [JETP Lett. 36, 318 (1982)].Google Scholar
  18. 18.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, New York, 1997).MATHGoogle Scholar
  19. 19.
    K. B. Efetov and A. I. Larkin, Zh. Éksp. Teor. Fiz. 85, 764 (1983) [Sov. Phys. JETP 58, 444 (1983)].Google Scholar
  20. 20.
    A. D. Mirlin, Phys. Rep. 326, 259 (2000).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Ya. M. Blanter and A. D. Mirlin, Phys. Rev. E 55, 6514 (1997).CrossRefADSGoogle Scholar
  22. 22.
    B. Rejaei, Phys. Rev. B 53, R13 235 (1996).Google Scholar
  23. 23.
    A. D. Mirlin, A. Müller-Groeling, and M. R. Zirnbauer, Ann. Phys. (N.Y.) 236, 325 (1994).CrossRefADSGoogle Scholar
  24. 24.
    L. Hostler and R. H. Pratt, Phys. Rev. Lett. 10, 469 (1963).MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973), Vol. 1.Google Scholar
  26. 26.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 4th ed. (Nauka, Moscow, 1988; Pergamon, Oxford, 1978).Google Scholar
  27. 27.
    V. Fock, Z. Phys. 98, 145 (1935).MATHCrossRefADSGoogle Scholar
  28. 28.
    M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 320 (1966); Rev. Mod. Phys. 38, 346 (1966).MathSciNetADSGoogle Scholar
  29. 29.
    J. Schwinger, J. Math. Phys. 5, 1606 (1964).MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. A. Skvortsov
    • 1
  • P. M. Ostrovsky
    • 1
    • 2
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut für NanotechnologieForschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations