JETP Letters

, Volume 85, Issue 1, pp 51–54 | Cite as

Determination of the region of existence of ferromagnetic nanostructures in the paraphase of La1−x BaxMnO3 by the EPR method

  • R. M. Eremina
  • I. V. Yatsyk
  • Ya. M. Mukovskiĭ
  • H. -A. Krug von Nidda
  • A. Loidl
Condensed Matter


In the paraphase of a number of La1−x BaxMnO3 single crystals with 0.1 ≤ x ≤ 0.2 below 340 K, signals of the ferromagnetic resonance are observed, which indicates the presence of magnetically ordered nanoscopic objects (ferrons). The region of the existence of ferrons on the Ba density-temperature phase diagram has an approximate triangular shape, which is characteristic of the Griffiths phase. Investigations of the angular and frequency dependences of the position of the ferromagnetic resonance line indicate that the nanostructures have a spherical shape. The parameters of their magnetic anisotropy are found to be H a1 = 2500 Oe and H a2 = −700 Oe.

PACS numbers

75.47.Lx 76.30.-v 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Zhang, H. Tanaka, T. Kanki, et al., Phys. Rev. B 64, 184404 (2001).Google Scholar
  2. 2.
    H. L. Ju, Y. S. Nam, J. E. Lee, and H. S. Shin, J. Magn. Magn. Mater. 219, 1 (2000).CrossRefADSGoogle Scholar
  3. 3.
    É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].CrossRefGoogle Scholar
  4. 4.
    K. I. Kugel’, A. L. Rakhmanov, A. O. Sboĭchakov, et al., Zh. Éksp. Teor. Fiz. 125, 648 (2004) [JETP 98, 572 (2004)].Google Scholar
  5. 5.
    D. Shulyatev, N. Kozlovskaya, R. Privezentsev, et al., J. Cryst. Growth 291, 262 (2006).CrossRefADSGoogle Scholar
  6. 6.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973), p. 85 [in Russian].Google Scholar
  7. 7.
    R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).CrossRefADSGoogle Scholar
  8. 8.
    S. V. Demishev, A. V. Semeno, N. E. Sluchanko, et al., Fiz. Tverd. Tela (St. Petersburg) 46, 2164 (2004) [Phys. Solid State 46, 2238 (2004)].Google Scholar
  9. 9.
    M. B. Salamon, P. Lin, and S. H. Chun, Phys. Rev. Lett. 88, 197203 (2002).Google Scholar
  10. 10.
    J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, et al., Phys. Rev. Lett. 95, 257202 (2005).Google Scholar
  11. 11.
    N. Volkov, G. Petrakovskii, K. Sablina, and K. Patrin, Acta Phys. Pol. A 105, 69 (2004).Google Scholar
  12. 12.
    J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, et al., Acta Phys. Pol. B 34, 847 (2003).Google Scholar
  13. 13.
    M. Hennion, F. Moussa, P. Lehouelleur, et al., Phys. Rev. Lett. 94, 057006 (2005).Google Scholar
  14. 14.
    V. S. Gaviko, N. G. Bebenin, and Ya. M. Mukovskiĭ, in Abstracts of 9th International Symposium on Ordering in Metals and Alloys (RGPU, Rostov-on-Don, 2006), p. 103.Google Scholar
  15. 15.
    V. E. Arkhipov, N. N. Bebenin, V. P. Dyakina, et al., Phys. Rev. B 61, 11229 (2000).Google Scholar
  16. 16.
    O. Chmaissem, B. Dabrowski, S. Kolesnik, et al., Phys. Rev. B 72, 104426 (2005).Google Scholar
  17. 17.
    R. Vidya, P. Ravindran, P. Vajeeston, et al., Phys. Rev. B 69, 092405 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • R. M. Eremina
    • 1
  • I. V. Yatsyk
    • 1
  • Ya. M. Mukovskiĭ
    • 2
  • H. -A. Krug von Nidda
    • 3
  • A. Loidl
    • 3
  1. 1.Kazan Physicotechnical Institute, Kazan Scientific CenterRussian Academy of SciencesKazanRussia
  2. 2.Moscow State Institute of Steel and AlloysTechnological UniversityMoscowRussia
  3. 3.Experimentalphysik VUniversität AugsburgAugsburgGermany

Personalised recommendations