JETP Letters

, Volume 85, Issue 1, pp 1–5 | Cite as

No realistic wormholes from ghost-free scalar-tensor phantom dark energy

  • K. A. Bronnikov
  • A. A. Starobinsky
Gravity, Astrophysics

Abstract

It is proven that no wormholes can be formed in viable scalar-tensor models of dark energy admitting its phantom-like (w < −1) behavior in cosmology, even in the presence of electric or magnetic fields, if the nonminimal coupling function f(Φ) is positive everywhere and the scalar field Φ itself is not a ghost. Some special static, spherically symmetric wormhole solutions may exist if f(Φ) is allowed to reach zero or to become negative, so that the effective gravitational constant becomes negative in some region making the graviton a ghost. If f remains non-negative, such solutions require severe fine-tuning and a very peculiar kind of model. If f < 0 is allowed, it is argued (and confirmed by previous investigations) that such solutions are generically unstable under nonstatic perturbations, the instability appearing right near transition surfaces to negative f.

PACS numbers

04.50.+h 04.70.-s 95.36.+x 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Kardashev, I. D. Novikov, and A. A. Shatskiy, astro-ph/0610441 (2006).Google Scholar
  2. 2.
    F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).Google Scholar
  3. 3.
    M. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).MathSciNetGoogle Scholar
  5. 5.
    H. G. Ellis, J. Math. Phys. 14, 104 (1973).CrossRefADSGoogle Scholar
  6. 6.
    J. P. S. Lemos, F. S. N. Lobo, and S. Q. de Oliveira, Phys. Rev. D 68, 064004 (2003); S. V. Sushkov, Phys. Rev. D 71, 043520 (2005).Google Scholar
  7. 7.
    J. M. Cline, S. Geon, and G. D. Moore, Phys. Rev. D 70, 043543 (2004).Google Scholar
  8. 8.
    A. A. Starobinsky, Pis’ma Astron. Zh. 7, 67 (1981) [Sov. Astron. Lett. 7, 36 (1981)].ADSGoogle Scholar
  9. 9.
    K. A. Bronnikov and S. V. Grinyok, Gravit. Cosmol. 10, 237 (2004), gr-qc/0411063.MATHMathSciNetADSGoogle Scholar
  10. 10.
    A. Vikman, Phys. Rev. D 71, 023515 (2005).Google Scholar
  11. 11.
    F. Cannata and A. Yu. Kamenshchik, gr-qc/0603129 (2006).Google Scholar
  12. 12.
    R. Gannouji, D. Polarski, A. Ranquet, and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0609, 016 (2006).CrossRefADSGoogle Scholar
  13. 13.
    K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101 (2006).Google Scholar
  14. 14.
    A. G. Riess, A. V. Philippenko, P. Challis, et al., Astron. J. 116, 1009 (1998); S. Perlmutter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  15. 15.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); T. Padmanabhan, Phys. Rep. 380, 235 (2003); E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).ADSGoogle Scholar
  16. 16.
    V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D (in press), astro-ph/0610026.Google Scholar
  17. 17.
    A. G. Riess, L.-G. Strolger, J. Tonry, et al., Astrophys. J. 607, 665 (2004).CrossRefADSGoogle Scholar
  18. 18.
    U. Alam, V. Sahni, and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0406, 008 (2004); D. Huterer and A. Cooray, Phys. Rev. D 71, 023506 (2005); Y. Gong, Class. Quantum Grav. 22, 2121 (2005); D. A. Dicus and W. W. Repko, Phys. Rev. D 70, 083527 (2004); S. Hannestad and E. Mortsell, J. Cosmol. Astropart. Phys. 0409, 001 (2004).CrossRefADSGoogle Scholar
  19. 19.
    P. Astier, J. Guy, N. Regnault, et al., Astron. Astrophys. 447, 31 (2006).CrossRefADSGoogle Scholar
  20. 20.
    D. N. Spergel, R. Bean, O. Dore, et al., astro-ph/0603449 (2006).Google Scholar
  21. 21.
    S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005); U. Alam and V. Sahni, Phys. Rev. D 73, 084024 (2006); H. K. Jassal, J. S. Bagla, and T. Padmanabhan, astro-ph/0601389 (2006); G. Zhao, J. Xia, B. Feng, and X. Zhang, astro-ph/0603621 (2006); U. Seljak, A. Slosar, and P. McDonald, J. Cosmol. Astropart. Phys. 0610, 014 (2006).Google Scholar
  22. 22.
    B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).CrossRefADSGoogle Scholar
  23. 23.
    L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0510, 001 (2005); S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 73, 103511 (2006).CrossRefADSGoogle Scholar
  24. 24.
    K. A. Bronnikov, S. B. Fadeev, and A. V. Michtchenko, Gen. Relativ. Gravit. 35, 505 (2003).MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    K. A. Bronnikov and S. V. Grinyok, Gravit. Cosmol. 11, 75 (2005), gr-qc/0509062.MATHADSGoogle Scholar
  26. 26.
    D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    D. Hochberg and M. Visser, Phys. Rev. D 58, 044021 (1998).Google Scholar
  28. 28.
    K. A. Bronnikov, Phys. Rev. D 64, 064013 (2001).Google Scholar
  29. 29.
    K. A. Bronnikov, J. Math. Phys. 43, 6096 (2002).MATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    C. Barceló and M. Visser, Class. Quantum Grav. 17, 3843 (2000).MATHCrossRefADSGoogle Scholar
  31. 31.
    K. A. Bronnikov and S. V. Grinyok, in Festschrift in Honour of Prof. Mario Novello (Rio de Janeiro, 2002); gr-qc/0205131.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • K. A. Bronnikov
    • 1
    • 2
  • A. A. Starobinsky
    • 1
    • 3
    • 2
  1. 1.Centre of Gravitation and Fundamental MetrologyVNIIMSMoscowRussia
  2. 2.Institute of Gravitation and Cosmology, PFURMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations