Advertisement

JETP Letters

, Volume 84, Issue 11, pp 613–618 | Cite as

Leading corrections to finite-size scaling for mixed-spin chains

  • R. Bischof
  • P. R. Crompton
Condensed Matter
  • 34 Downloads

Abstract

The leading corrections to finite-size scaling relations for the correlation length and twist order parameter of three mixed-spin quantum spin chains for the critical feature that develops at ϑ = π, corresponding to a change in the topological realization of the ground states, are identified.

PACS numbers

75.10.Jm 75.40.Cx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. M. Haldane, Phys. Lett. A 93A, 464 (1983).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. M. Polyakov, Phys. Lett. B 82B, 247 (1979).CrossRefADSGoogle Scholar
  4. 4.
    M. Nakamura and S. Todo, Phys. Rev. Lett. 89, 077204 (2002).Google Scholar
  5. 5.
    Z. Xu, J. Dai, H. Ying, and B. Zheng, Phys. Rev. B 67, 214426 (2003).Google Scholar
  6. 6.
    T. Tonegawa, T. Hikihara, M. Kaburagi, et al., J. Phys. Soc. Jpn. 76, 1000 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Todo and K. Kato, Prog. Theor. Phys. Suppl. 138, 535 (2000).ADSGoogle Scholar
  8. 8.
    P. R. Crompton, W. Janke, Z. X. Xu, and H. P. Ying, Nucl. Phys. (Proc. Suppl.) 140, 817 (2005).CrossRefADSGoogle Scholar
  9. 9.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).CrossRefADSGoogle Scholar
  10. 10.
    W. Bietenholz, A. Pochinsky, and U.-J. Wiese, Phys. Rev. Lett. 75, 4524 (1995).CrossRefADSGoogle Scholar
  11. 11.
    E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961).zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    T. Hikihara, T. Tonegawa, M. Kaburagi, et al., J. Phys. Soc. Jpn. 69, 1207 (2001).CrossRefGoogle Scholar
  13. 13.
    S. Yamamoto, Phys. Rev. B 52, 10 170 (1995).Google Scholar
  14. 14.
    K. Takano, Phys. Rev. Lett. 82, 5124 (1999).CrossRefADSGoogle Scholar
  15. 15.
    D. Controzzi and G. Mussardo, Phys. Rev. Lett. 92, 021601 (2004).Google Scholar
  16. 16.
    D. Controzzi and G. Mussardo, Phys. Lett. B 617, 133 (2005).CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Nakamura and S. Todo, Prog. Theor. Phys. Suppl. 145, 217 (2002).ADSGoogle Scholar
  18. 18.
    M. Nakamura and J. Voit, Phys. Rev. B 65, 153110 (2002).Google Scholar
  19. 19.
    V. A. Fateev, E. Onofri, and A. B. Zamolodchikov, Nucl. Phys. B 406, 521 (1993).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    I. Affleck, Phys. Rev. Lett. 56, 746 (1986).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, Phys. Rev. Lett. 58, 771 (1987).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).CrossRefADSGoogle Scholar
  23. 23.
    S. Todo and K. Kato, Phys. Rev. Lett. 87, 047203 (2001).Google Scholar
  24. 24.
    D. C. Johnston, R. K. Kremer, M. Troyer, et al., Phys. Rev. B 61, 9558 (2000).CrossRefADSGoogle Scholar
  25. 25.
    C. Hoelbling and C. B. Lang, Phys. Rev. B 54, 3434 (1996).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • R. Bischof
    • 1
  • P. R. Crompton
    • 2
    • 3
  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  2. 2.Institut für Theoretische Physik IUniversität HamburgHamburgGermany
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations